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Motivation

▶ Symmetric-key cryptography: encryption, authentication, hashing, ...

▶ You want to design symmetric-key cryptography

▶ You want to break symmetric-key cryptography

�
Symmetric-key primitives are not based on reductions to ‘difficult’ problems

Cryptanalysis is how we understand their design and security
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Primitives

Ek

Block ciphers, tweakable block ciphers, permutations, ...

ø
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Primitives
Example
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Cryptanalysis

▶ Different goals depending on the application

▶ Key recovery

F1 F2 . . . Fr−1 Fr

guess part of krguess part of k1

distinguisher

▶ Combinatorial property (‘distinguisher’) is used to filter out wrong key guesses

▶ There are several other ways to use these properties
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Cryptanalysis

▶ Several systematic techniques have been developed since 1980s

▶ Most important examples:

– Linear cryptanalysis

– Differential cryptanalysis

– Integral cryptanalysis

▶ Each of these is quite broad
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Overview

▶ Linear cryptanalysis

– Lecture 9:00-10:30

– Exercises 11:00-12:30

▶ Differential cryptanalysis

– Lecture 14:30-16:00

– Exercises 16:30-18:00

https://tim.cryptanalysis.info/spring-school/
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Linear cryptanalysis

based on

T. Beyne, V. Rijmen. Linear Cryptanalysis. Cambridge University Press. (Winter 2025)
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Overview

▶ Linear approximations

▶ Correlation matrices

▶ Linear trails

▶ Cost analysis

▶ Key-recovery techniques

v Exercises
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Linear approximations

▶ Function F : Fn
2 → Fm

2 , e.g. a block cipher

▶ Probabilistic linear relation between x and y = F(x)

m∑

i=1

vi yi

︸ ︷︷ ︸
vTy

≈
n∑

i=1

ui xi

︸ ︷︷ ︸
uTx

▶ Short notation vTy ≈ uTx

▶ Pair (u, v) of masks u ∈ Fn
2 and v ∈ Fm

2 determines the linear approximation
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Linear approximations
Correlation

▶ If x and F(x) are ‘unrelated’, the number of x such that vTF(x) = uTx is 2n/2

▶ Correlation

c = 2×
(
#
{
x ∈ Fn

2 | vTF(x) = uTx
}

2n
− 1

2

)

▶ Equivalent expression using probabilities (x uniform random on Fn
2)

c = 2Pr
x

[
vTF(x) = uTx

]
− 1

�
Beware of probabilistic arguments
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Linear approximations
Correlation

▶ Technical result: if r is a random variable on F2, then

2Pr
r
[r = 0]− 1 = Pr

r
[r = 0]− Pr

r
[r = 1] = Er

[
(−1)r

]

▶ Applied to r = vTF(x) + uTx , this gives

c = 2Pr
x

[
vTF(x) = uTx

]
− 1 =

1

2n

∑

x∈Fn
2

(−1)v
TF(x)+uTx
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Linear approximations
Example

▶ 3-bit S-box S: F3
2 → F3

2

x 000 001 010 011 100 101 110 111
S(x) 111 010 100 101 001 110 011 000

▶ Linear approximation (u, v) = (001, 001)

S

▶ Correlation 2Prx
[
vTS(x) = uTx

]
− 1 = 2 · 2

8 − 1 = −1
2

= (−1− 1+1 + 1− 1− 1− 1− 1)/8
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Linear approximations
Distinguishers

▶ Sample q inputs at random and estimate correlation

▶ Estimation error will be about 1/
√
q

▶ q ≈ 1/c2 samples are enough for a distinguisher
(assuming c is not too small/large)

�
Number of samples depends on true- and false-positive probabilities (see later)
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Linear approximations

S

S

S

S

S

S

S

S

S

S

− 1
2

Propagation through a sequence of operations?
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Linear approximations
Piling up approximations

S S

x y zx y z r1 = uTx + wTy

r2 = wTy + vTz

r1 + r2 = uTx + vTz
�

Pretend that r1 and r2 are independent:

E
[
(−1)r1+r2

]
︸ ︷︷ ︸
2Pr[vTz=uTx ]−1

ÿ
= E

[
(−1)r1

]
︸ ︷︷ ︸

2Pr[wTy=uTx ]−1

× E
[
(−1)r2

]
︸ ︷︷ ︸

2Pr[wTy=vTz]−1

▶ For example: u = w = v = 001 gives −1/2×−1/2 = 1/4

▶ Unfortunately, this is wrong (the correct result is zero)
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Correlation matrices

▶ 2m × 2n matrix containing correlations of linear approximations of F : Fn
2 → Fm

2

CF
v ,u = 2 Pr

x

[
vTF(x) = uTx

]
− 1

CF
v ,u

v

u

ñ ‘Matrix’ rather than ‘table’ because CF really does represent a linear map
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Correlation matrices
Example

CS =




1 0 0 0 0 0 0 0
0 − 1

2 0 − 1
2 0 1

2 0 − 1
2

0 0 − 1
2

1
2 0 0 − 1

2 − 1
2

0 1
2 − 1

2 0 0 1
2

1
2 0

0 0 0 0 − 1
2 − 1

2
1
2 − 1

2
0 − 1

2 0 1
2

1
2 0 1

2 0
0 0 1

2
1
2 − 1

2
1
2 0 0

0 − 1
2 − 1

2 0 − 1
2 0 0 1

2




CF
0,u = 2Pr[uTx = 0]− 1 =

{
1 if u = 0

0 else

CF
v ,0 = 2Pr[vTF(x) = 0]− 1 =

{
1 if v = 0

0 else

(second property if F is invertible)
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Correlation matrices
Multiplication property

▶ If F = F2 ◦ F1, then
CF = CF2CF1

� Proof by calculation

▶ This is the most important property of correlation matrices

▶ There are more conceptual (but more abstract) proofs without calculation
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Correlation matrices
Multiplication property

▶ If F is invertible, then CF−1
=
(
CF
)−1

▶ If F is invertible, then CF is orthogonal

� Proof: show that CF−1
=
(
CF
)T

� x = F−1(y) is still uniform random because F is invertible
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Correlation matrices
Multiplication property: example

S S

001 001
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Correlation matrices
Multiplication property: example




1 0 0 0 0 0 0 0
0 − 1

2 0 − 1
2 0 1

2 0 − 1
2

0 0 − 1
2

1
2 0 0 − 1

2 − 1
2

0 1
2 − 1

2 0 0 1
2

1
2 0

0 0 0 0 − 1
2 − 1

2
1
2 − 1

2
0 − 1

2 0 1
2

1
2 0 1

2 0
0 0 1

2
1
2 − 1

2
1
2 0 0

0 − 1
2 − 1

2 0 − 1
2 0 0 1

2







1 0 0 0 0 0 0 0
0 − 1

2 0 − 1
2 0 1

2 0 − 1
2

0 0 − 1
2

1
2 0 0 − 1

2 − 1
2

0 1
2 − 1

2 0 0 1
2

1
2 0

0 0 0 0 − 1
2 − 1

2
1
2 − 1

2
0 − 1

2 0 1
2

1
2 0 1

2 0
0 0 1

2
1
2 − 1

2
1
2 0 0

0 − 1
2 − 1

2 0 − 1
2 0 0 1

2




▶ Correlation of (001, 001) over S ◦ S:
1

4
− 1

4
− 1

4
+

1

4
= 0

▶ Correct result, but this approach doesn’t scale
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Linear trails

▶ If F = Fr ◦ · · · ◦ F2 ◦ F1, then CF = CFr · · ·CF2CF1

▶ Writing out this product of matrices gives

CF
ur+1,u1 =

∑

u2,...,ur

CFr
ur+1,ur · · ·CF2

u3,u2C
F1
u2,u1

▶ A linear trail is a sequence (u1, u2, . . . , ur+1) and has correlation
∏r

i=1 C
Fi
ui+1,ui

▶ Most analysis relies on the assumption that there exist a set Λ of ‘dominant trails’:

CF
ur+1,u1 =

∑

u∈Λ

∏r
i=1 C

Fi
ui+1,ui

+ ε
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Linear trails
Example

S

S

S

S

S

S

S

S

S

C k1 CS CP C k2 CS CP C k3 CS C k4

▶ To analyze trails we need to determine C ki , CS and CP
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Correlation matrices
Bricklayer functions

▶ If F(x1∥x2) = F1(x1)∥F2(x2), then

CF
v1∥v2,u1∥u2 = CF1

v1,u1C
F2
v2,u2

� Proof by calculation

▶ Equivalently: CF = CF1 ⊗ CF2

▶ For the S-box layer: CS = CS ⊗ CS ⊗ CS
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Correlation matrices
Translations and linear functions

▶ If F(x) = x + k , then

CF
v ,u =

{
(−1)v

Tk if u = v

0 else

� Proof

▶ If F(x) = Mx with M ∈ Fm×n
2 then

CF
v ,u =

{
1 if u = MTv

0 else

� Proof

▶ Bit permutation P satisfies PT = P−1
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Linear trails
Example: 3-round approximation
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2 − 1
2
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Example: 3-round approximation
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Linear trails
Example: 3-round approximation

− 9
32

+ 9
32

− 3
32

+ 3
32

− 1
32

+ 1
32

0

0.02

0.04

0.06

Estimated correlation (28 samples with fixed key)

P
ro
b
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ili
ty

d
en
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ty

▶ CF
001,001 = (−1)κ1/8

(
1 + (−1)κ1+κ2/2

)(
1 + (−1)κ1+κ3/2

)
∈
{
± 1

32 ,± 3
32 ,± 9

32

}

▶ Correlation reveals something about the key (but we will see better methods later)
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Cost analysis

▶ Using q independent samples:

ĉ =
1

q

q∑

i=1

(−1)u
Tx i+vTy i

▶ Simplifications:

– q is not too small and correlation c is not too large

– Correlation is zero for wrong key guesses

▶ Distribution of ĉ is close to normal with mean c and variance (1− c2)/q ≈ 1/q

▶ Hypothesis test: |ĉ | ≥ t/
√
q?
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Cost analysis

-1 0 1c t/
√
q−t/

√
q

0

√
q
2π

Estimated correlation

P
ro
b
ab
ili
ty

d
en
si
ty

� True-positive probability PS = Φ(c
√
q − t) + Φ(−c

√
q − t)

▶ False-positive probability PF = 2Φ(−t)
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Cost analysis

▶ Eliminating t gives

PS = Φ
(
Φ−1(PF/2) + c

√
q
)
+Φ

(
Φ−1(PF/2)− c

√
q)
)

▶ If |c |√q is large enough, one of both terms is dominant so

q =

(
Φ−1

(
PS

)
− Φ−1(PF/2)

c

)2

▶ If c depends on the key, need to average the success probability

�
This is essentially optimal but important assumptions are made
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Key recovery
▶ Correlation depends on the key, and this can be used for key-recovery

Extreme case with one dominant trail

CF
v ,u ≈ (−1)w

Tkc

▶ Guessing key material from the first or last round is often more powerful

F1 F2 . . . Fr−1 Fr

guess part of krguess part of k1

linear approximation

▶ Naive cost: O(qK ) for K candidate keys if the distinguisher uses q data
on average PFK incorrect candidates remain
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Key recovery
Matsui’s method

▶ Samples (x1, y1), . . . , (xq, yq) → reduced values z1, . . . , zq ∈ Fm
2

▶ For candidate key k , the estimated correlation is of the form

ĉk =

q∑

i=1

fk(zi ) =
∑

z∈Fm
2

fk(z)#{1 ≤ i ≤ q | zi = z}

= ×

number of
occurrences
of value z

test-statistic
for key k

contribution to
test-statistic
for key k and
value z

K × 1 K × 2m 2m × 1

▶ Cost: O(q + K2m) time and O(q + K + 2m) memory
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Further topics
Table of contents of Linear Cryptanalysis

1. Introduction

2. Correlation matrices

3. Optimization of linear trails

4. Statistics of linear cryptanalysis
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6. Multiple linear cryptanalysis
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8. Zero-correlation approximations

9. Miscellaneous extensions

10. Functions on Abelian groups

11. Geometric approach
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