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Motivation

> Symmetric-key cryptography: encryption, authentication, hashing, ...
> You want to design symmetric-key cryptography

> You want to break symmetric-key cryptography

@ Symmetric-key primitives are not based on reductions to ‘difficult’ problems

Cryptanalysis is how we understand their design and security



Primitives

Block ciphers, tweakable block ciphers, permutations, ...



Primitives
Example




Cryptanalysis

» Different goals depending on the application
> Key recovery

guess part of ky guess part of k,

O

distinguisher

» Combinatorial property (‘distinguisher’) is used to filter out wrong key guesses

P> There are several other ways to use these properties



Cryptanalysis

» Several systematic techniques have been developed since 1980s

» Most important examples:

— Linear cryptanalysis
— Differential cryptanalysis

— Integral cryptanalysis

» Each of these is quite broad



Overview

» Linear cryptanalysis
— Lecture

— Exercises

» Differential cryptanalysis
— Lecture

— Exercises

https://tim.cryptanalysis.info/spring-school/

9:00-10:30

11:00-12:30

14:30-16:00

16:30-18:00


https://tim.cryptanalysis.info/spring-school/
https://tim.cryptanalysis.info/spring-school/

Linear cryptanalysis

based on

T. Beyne, V. Rijmen. Linear Cryptanalysis. Cambridge University Press. (Winter 2025)



Overview

P Linear approximations
» Correlation matrices

» Linear trails

» Cost analysis

» Key-recovery techniques

Y .
# Exercises



Linear approximations

» Function F : F§ — 7", e.g. a block cipher

» Probabilistic linear relation between x and y = F(x)

m n
E Viyi = g uj X;
i=1 i=1

—_— =

vTy uTx

» Short notation v'y ~ uTx

» Pair (u,v) of masks u € F] and v € FJ" determines the linear approximation
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Linear approximations
Correlation

» If x and F(x) are ‘unrelated’, the number of x such that vTF(x) = u"x is 2" /2

» Correlation

c— o (#{x e FY | \;:F(x) =u'x} B ;)

» Equivalent expression using probabilities (x uniform random on [F7)

— T —_ Ty _
c—2F)’(r[v F(x)=u'x] -1

g% Beware of probabilistic arguments
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Linear approximations
Correlation

» Technical result: if r is a random variable on F5, then
= — = = — g = — r
2Pr[r = 0] — 1 = Pr[r =0] — Pr[r = 1] Er[(—1)"]
> Applied to r = vTF(x) + u'x, this gives

1 T T
_ T T 1 = _\WIF(x)4u'x
c=2 Iir [v F(x)=u x] 1= o EEFH( 1) u
xcls
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Linear approximations
Example

» 3-bit S-box S: F3 — F3

x 000 001 010 O11
S(x) 111 010 100 101

100 101

110 111

001 110 011 000

» Linear approximation (u,v) = (001,001)
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Linear approximations
Example

» 3-bit S-box S: F3 — F3

X 000 001 010 011 100 101 110 111
S(x) 111 010 100 101 001 110 011 000

» Linear approximation (u,v) = (001,001)

> Correlation 2Pry [vTS(x) =uTx] —1=2-5-1=—3
(=

1+1+1—1—1—1—1)/8

2
8
1-—
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Linear approximations

Distinguishers
» Sample g inputs at random and estimate correlation
» Estimation error will be about 1/,/q

» g~ 1/c? samples are enough for a distinguisher
(assuming c is not too small/large)

@ Number of samples depends on true- and false-positive probabilities (see later)
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Linear approximations
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Linear approximations

— — D
g S S S b
- ) D
D — D
g S S S &

) __ D

) ) (ﬁ%
g S S S &

) __ D

Propagation through a sequence of operations?
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Linear approximations
Piling up approximations

X y z ri = utx 4+ WTy
E[ S S r=w'y+v'z

ri+ro = UTX+VTZ

@ Pretend that r; and ry are independent:

E[(-1)+] £ E[(-)n] x E[(-1)7]

—_—— —_——— —_————
2Pr[vTz=uTx]-1  2Pr[wTy=u"x]-1 2Pr[wTy=vTz]-1
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Linear approximations
Piling up approximations

X y z ri = u'x + WTy

3 S S E rp=w'y+v'z

ri+ro = UTX+VTZ

@ Pretend that r; and ry are independent:

E[(-1)+] £ E[(-)n] x E[(-1)7]

—_—— —_——— —_————
2Pr[vTz=uTx]-1  2Pr[wTy=u"x]-1 2Pr[wTy=vTz]-1

» For example: u=w = v =001 gives —1/2 x —1/2=1/4
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Linear approximations
Piling up approximations

X y z ri = u'x + WTy

3 S S E rp=w'y+v'z

ri+ro = UTX+VTZ

@ Pretend that r; and ry are independent:

E[(-1)+] £ E[(-)n] x E[(-1)7]

—_—— —_——— —_————
2Pr[vTz=uTx]-1  2Pr[wTy=u"x]-1 2Pr[wTy=vTz]-1

» For example: u=w = v =001 gives —1/2 x —1/2=1/4

» Unfortunately, this is wrong (the correct result is zero)
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Correlation matrices
> 2™ x 2™ matrix containing correlations of linear approximations of F : 5 — F7’

Cr,=2Pr[viF(x)=u"x] -1
’ X

u

1 ‘Matrix’ rather than ‘table’ because CF really does represent a linear map
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Correlation matrices

Example

r 1
O HINHINDO =HINO O —Hiy

O O HiaHIHINHINDO O

O —HINO HINHINDO —HINO
I

O O O O i
I [

O HIaHINDO O HIa-HINO

O O HINHINO O oI

O —HNO HNO =HINO —HIN

— O O O OO oo

Il
n
()
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Correlation matrices

Example
1 0 0 0 0 0 0 0]
o -2 o -+ o LI o -1
0 0 —% % 0 0 —% —é
cs=|% 2 2 0 0 5 7 O
0 0 0 O —% 2 -1
0o -3 0 % 2 0 3 0
o o ¢+ I -2 L 0 o
R S-SR 1
00— 2 0 -3 0 0 35|
1 ifu=0
Cuo=2Pru™x =0-1= e
’ 0 else
1 ifv=0
CFo=2PvTF(x)=0]—1={ """
’ 0 else

(second property if F is invertible)
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Correlation matrices
Multiplication property

» If F=F,o0Fq, then
cF = chch
[.1 Proof by calculation

» This is the most important property of correlation matrices

» There are more conceptual (but more abstract) proofs without calculation
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Correlation matrices
Multiplication property

> If F is invertible, then CF ™" = (CF) ™"

» If F is invertible, then CF is orthogonal
[l Proof: show that CF ' = (CF)T

@ x =FI(y) is still uniform random because F is invertible
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Correlation matrices
Multiplication property: example

001

001
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Correlation matrices

r 1
O HINHINDO —HNO O —IN

O O HiaHINHINHINDO O

O —HINO =HIANHINO —=HINO
I

O O O O oI
I [

O HINHINO O —HaHINO

O O HNHINO O I

O HINO =HINO —HINO —Io
, | I

- O O O OO oo
L I

r 1
O —HAHINO =HNO O —lN

O O HiaHINHINHINDO O

O —HINO HINHINDO =N O

O O O O HlaHIcNHINHI

O HIAHINO O —HaHINO

O O HNHINO O I

O —=HNO =HINO =HINO —IN

- O O O OO oo
L 1

Multiplication property: example

» Correlation of (001,001) over SoS:

» Correct result, but this approach doesn't scale
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Linear trails
» If F=F,0---0Fy0Fy, then CF = CFr...CcF2Ch

» Writing out this product of matrices gives

Fr Fa F1
Ur+17U1 - Z Cur+1 ur’ Cua up CU2 u
up,..
. . . F
> A linear trail is a sequence (u1, ta, ..., uy11) and has correlation [[/_; C;7

» Most analysis relies on the assumption that there exist a set A of ‘dominant trails’:

Ur+1,u1 § :Hl 1 U:+1 uj +e

ueN
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Linear trails

Example
e — ol il
% S b S D S b
— T @";}" @ — @
) S w5
% S b S D S b
— T @";}" @ — @
SR ST S
% S b S D S b
T @"\—J" @ -/ @

ch S P Cl S Pk CS ch

» To analyze trails we need to determine Cki. CS and CP
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Correlation matrices
Bricklayer functions

> If F(x1][x2) = F1(x1)||F2(x2), then
CF

vi||va,ur||u2

[.1 Proof by calculation

=ch

vi,u1

F2
v2,U2
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Correlation matrices
Bricklayer functions

> If F(x1][x2) = F1(x1)||F2(x2), then

[.1 Proof by calculation

CF

vi||va,ur||u2

» Equivalently: CF = CFt @ CP2

» For the S-box layer: CS =

CS CS® CS

=ch

F2
V1,U1 SVa,U2
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Correlation matrices
Translations and linear functions

» If F(x) = x + k, then

1 Proof
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Correlation matrices
Translations and linear functions

» If F(x) = x + k, then

[l Proof

> If F(x) = Mx with M € FJ"*" then

v,u

FJ1 ifu=MTy
0 else

[l Proof

» Bit permutation P satisfies PT = P!
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Linear trails
Example: 3-round approximation

i
-]

P ﬁ$$

PO PP e
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Linear trails
Example: 3-round approximation

(=1)"/8
with k1 = k11 + koo + k35 + 1



Linear trails
Example: 3-round approximation

(-1 /8 + (-1)+72/16
with kK1 = k11 + koo + kas + 1, ko = kog + k34
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Linear trails
Example: 3-round approximation

(<184 (<1516 + (<1516
with K1 = ki1 + koo + kas + 1, ko = kog + ka4 and k3 = ko5 + k3 6
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Linear trails
Example: 3-round approximation

(_1)H1/8 + (—1)H1+52/16 + (—1)”1+”3/16 + (_1)f€1+52+53/32
with R1 = k1’1 + k2’2 + k3’5 +1, Ko = k2,8 + k3’4 and R3 = k2,5 + k3,6
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Linear trails
Example: 3-round approximation

>
p=
@ 0.06 |
(]
©
2 0.04|
=
(3]
8 u
8 0.02
a
0
9 3 1 1 3 9
3 % Tm Tm ot T3

Estimated correlation (28 samples with fixed key)

> Chsoor = (—1)/8 (L+ (-1t /2) (14 (-ts/2) e {4 4 43 451

» Correlation reveals something about the key (but we will see better methods later)
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Linear trails
Example: 3-round approximation
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(] L
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(3]
8 u
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Estimated correlation (28 samples with fixed key)
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Linear trails
Example: 3-round approximation

Py

‘@ 0.06 [ i

[0} L

_O I -

2 0.04|

2 /

4§ 0.02 |

[a

0 o =

-5 % —% tn tm +3

Estimated correlation (28 samples with fixed key)

> Chsoor = (—1)/8 (L+ (-1t /2) (14 (-ts/2) e {4 4 43 451

» Correlation reveals something about the key (but we will see better methods later)
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Cost analysis

» Using g independent samples:

-Q\H

q
E U Txi+vTly;

» Simplifications:
— g is not too small and correlation ¢ is not too large

— Correlation is zero for wrong key guesses

» Distribution of € is close to normal with mean ¢ and variance (1 — c?)/q ~

> Hypothesis test: [c| > t/,/q?

1/q
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Cost analysis

q |
2r \

Probability density

| N

1 ~t/ya 0 < t)yq

Estimated correlation

[1 True-positive probability Ps = ®(c,/q — t) + ®(—c/q — t)

» False-positive probability Pr = 2d(—t)




Cost analysis

» Eliminating t gives
Ps = &(® 1 (Pr/2) + cy/q) + ®(® 1 (Pr/2) — /7))

> If |c|\/q is large enough, one of both terms is dominant so

q= <¢_1(PS) - cl"1(PF/2)>2

C

P If ¢ depends on the key, need to average the success probability

@ This is essentially optimal but important assumptions are made
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Key recovery

» Correlation depends on the key, and this can be used for key-recovery
Extreme case with one dominant trail

cF, ~ (—1)" ke

» Guessing key material from the first or last round is often more powerful

guess part of kg guess part of k,

O

linear approximation

» Naive cost: O(gK) for K candidate keys if the distinguisher uses g data
on average PrK incorrect candidates remain
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Key recovery

Matsui's method
» Samples (x1,y1),...,(Xq,Yq) — reduced values z;,...,z, € FY
» For candidate key k, the estimated correlation is of the form

Ekzsz(zi): Z fil(z)#{1<i<q|z =2z}
i—1

zeFy
Kx1 K x2m 2" x 1
contribution to number of
test-statistic /-2 occurrences
of value z

— for key k and %
value z

i
2N
2A 0000000
2A2772772777277222227277

test-statistic
for key k

NN
N

» Cost: O(q + K2™) time and O(q + K +2™) memory
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Further topics

Table of contents of Linear Cryptanalysis

—_
= O

© 0Nk W

Introduction

Correlation matrices
Optimization of linear trails
Statistics of linear cryptanalysis
Key-recovery techniques
Multiple linear cryptanalysis
Optimal statistical testing
Zero-correlation approximations
Miscellaneous extensions

Functions on Abelian groups

. Geometric approach
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