Linear and differential cryptanalysis

Tim Beyne

tim@cryptanalysis.info

KU Leuven

March 11, 2025

Motivation

Symmetric-key cryptography: encryption, authentication, hashing, ...

You want to design symmetric-key cryptography

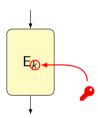
You want to break symmetric-key cryptography

Ì

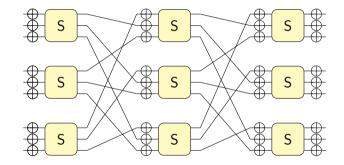
Symmetric-key primitives are not based on reductions to 'difficult' problems Cryptanalysis is how we understand their design and security

Primitives

Block ciphers, tweakable block ciphers, permutations, ...



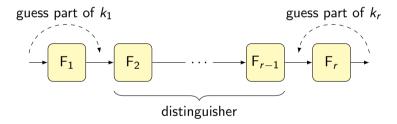
Primitives Example



Cryptanalysis

Different goals depending on the application

► Key recovery



Combinatorial property ('distinguisher') is used to filter out wrong key guesses

There are several other ways to use these properties

Cryptanalysis

Several systematic techniques have been developed since 1980s

- Most important examples:
 - Linear cryptanalysis
 - Differential cryptanalysis
 - Integral cryptanalysis
- Each of these is quite broad

Overview

Linear cryptanalysis

- Lecture
- Exercises
- Differential cryptanalysis
 - Lecture
 - Exercises

11:00-12:30

14:30-16:00

16:30-18:00

https://tim.cryptanalysis.info/spring-school/

Linear cryptanalysis

based on

T. Beyne, V. Rijmen. *Linear Cryptanalysis*. Cambridge University Press. (Winter 2025)

Overview

Linear approximations

- Correlation matrices
- Linear trails
- Cost analysis
- Key-recovery techniques

Linear approximations

▶ Function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, e.g. a block cipher

Probabilistic linear relation between x and y = F(x)

▶ Short notation $v^{\mathsf{T}}y \approx u^{\mathsf{T}}x$

▶ Pair (u, v) of masks $u \in \mathbb{F}_2^n$ and $v \in \mathbb{F}_2^m$ determines the linear approximation

Linear approximations Correlation

▶ If x and F(x) are 'unrelated', the number of x such that $v^T F(x) = u^T x$ is $2^n/2$

Correlation
$$c = 2 \times \left(\frac{\# \left\{ x \in \mathbb{F}_2^n \mid v^\mathsf{T} \mathsf{F}(x) = u^\mathsf{T} x \right\}}{2^n} - \frac{1}{2} \right)$$

• Equivalent expression using probabilities (x uniform random on \mathbb{F}_2^n)

$$c = 2 \Pr_{\boldsymbol{x}} \left[\boldsymbol{v}^{\mathsf{T}} \mathsf{F}(\boldsymbol{x}) = \boldsymbol{u}^{\mathsf{T}} \boldsymbol{x} \right] - 1$$

Linear approximations Correlation

• Technical result: if r is a random variable on \mathbb{F}_2 , then

$$2\Pr_{r}[r=0] - 1 = \Pr_{r}[r=0] - \Pr_{r}[r=1] = \mathsf{E}_{r}[(-1)^{r}]$$

• Applied to $\mathbf{r} = \mathbf{v}^{\mathsf{T}}\mathsf{F}(\mathbf{x}) + u^{\mathsf{T}}\mathbf{x}$, this gives

$$c = 2\Pr_{\mathbf{x}} \left[\mathbf{v}^{\mathsf{T}} \mathsf{F}(\mathbf{x}) = u^{\mathsf{T}} \mathbf{x} \right] - 1 = \frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{\mathbf{v}^{\mathsf{T}} \mathsf{F}(x) + u^{\mathsf{T}} x}$$

Linear approximations Example

▶ 3-bit S-box S: $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

x	000	001	010	011	100	101	110	111
S(x)	111	010	100	101	001	110	011	000

• Linear approximation (u, v) = (001, 001)

Linear approximations Example

▶ 3-bit S-box S: $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

x	000	001	01 <mark>0</mark>	01 <mark>1</mark>	100	101	110	111
S(x)	111	010	10 <mark>0</mark>	10 <mark>1</mark>	001	110	011	000

• Linear approximation (u, v) = (001, 001)

► Correlation
$$2 \operatorname{Pr}_{\mathbf{x}} \left[\mathbf{v}^{\mathsf{T}} \mathsf{S}(\mathbf{x}) = u^{\mathsf{T}} \mathbf{x} \right] - 1 = 2 \cdot \frac{2}{8} - 1 = -\frac{1}{2} = (-1 - 1 + 1 + 1 - 1 - 1 - 1 - 1)/8$$

Linear approximations Distinguishers

Sample q inputs at random and estimate correlation

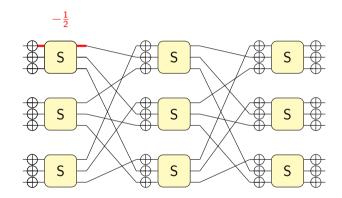
• Estimation error will be about $1/\sqrt{q}$

• $q \approx 1/c^2$ samples are enough for a distinguisher (assuming c is not too small/large)

Number of samples depends on true- and false-positive probabilities (see later)

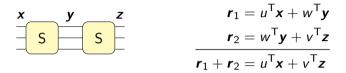
Linear approximations

Linear approximations



Propagation through a sequence of operations?

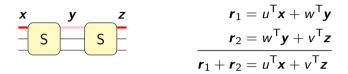
Linear approximations Piling up approximations



Pretend that r_1 and r_2 are independent:

$$\underbrace{\mathsf{E}[(-1)^{r_1+r_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}z=u^{\mathsf{T}}x]-1} \overset{\texttt{e}}{=} \underbrace{\mathsf{E}[(-1)^{r_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=u^{\mathsf{T}}x]-1} \times \underbrace{\mathsf{E}[(-1)^{r_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=v^{\mathsf{T}}z]-1}$$

Linear approximations Piling up approximations

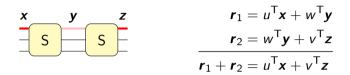


Pretend that r_1 and r_2 are independent:

$$\underbrace{\mathsf{E}[(-1)^{r_1+r_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}z=u^{\mathsf{T}}x]-1} \overset{\texttt{e}}{=} \underbrace{\mathsf{E}[(-1)^{r_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=u^{\mathsf{T}}x]-1} \times \underbrace{\mathsf{E}[(-1)^{r_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=v^{\mathsf{T}}z]-1}$$

► For example: u = w = v = 001 gives $-1/2 \times -1/2 = 1/4$

Linear approximations Piling up approximations



Pretend that r_1 and r_2 are independent:

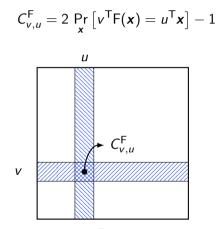
$$\underbrace{\mathsf{E}[(-1)^{\boldsymbol{r}_1+\boldsymbol{r}_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}\boldsymbol{z}=u^{\mathsf{T}}\boldsymbol{x}]-1} \overset{\boldsymbol{\&}}{=} \underbrace{\mathsf{E}[(-1)^{\boldsymbol{r}_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}\boldsymbol{y}=u^{\mathsf{T}}\boldsymbol{x}]-1} \times \underbrace{\mathsf{E}[(-1)^{\boldsymbol{r}_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}\boldsymbol{y}=v^{\mathsf{T}}\boldsymbol{z}]-1}$$

► For example: u = w = v = 001 gives $-1/2 \times -1/2 = 1/4$

Unfortunately, this is wrong (the correct result is zero)

Correlation matrices

▶ $2^m \times 2^n$ matrix containing correlations of linear approximations of F : $\mathbb{F}_2^n \to \mathbb{F}_2^m$



i 'Matrix' rather than 'table' because C^F really does represent a linear map

Correlation matrices Example

$$C^{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ \end{bmatrix}$$

Correlation matrices Example

(second property if F is invertible)

Correlation matrices Multiplication property

▶ If $F = F_2 \circ F_1$, then

$$C^{\mathsf{F}} = C^{\mathsf{F}_2} C^{\mathsf{F}_1}$$

Proof by calculation

> This is the most important property of correlation matrices

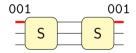
There are more conceptual (but more abstract) proofs without calculation

Correlation matrices Multiplication property

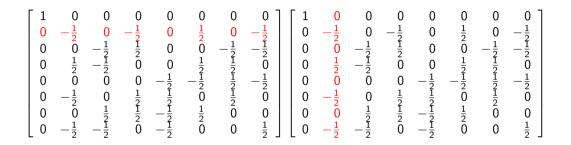
• If F is invertible, then
$$C^{F^{-1}} = (C^F)^{-1}$$

?
$$\mathbf{x} = F^{-1}(\mathbf{y})$$
 is still uniform random because F is invertible

Correlation matrices Multiplication property: example



Correlation matrices Multiplication property: example



► Correlation of (001,001) over S ∘ S:

$$\frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} = 0$$

Correct result, but this approach doesn't scale

Linear trails

• If
$$F = F_r \circ \cdots \circ F_2 \circ F_1$$
, then $C^F = C^{F_r} \cdots C^{F_2} C^{F_1}$

Writing out this product of matrices gives

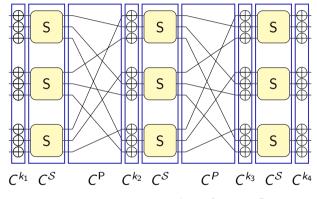
$$C_{u_{r+1},u_1}^{\mathsf{F}} = \sum_{u_2,\dots,u_r} C_{u_{r+1},u_r}^{\mathsf{F}_r} \cdots C_{u_3,u_2}^{\mathsf{F}_2} C_{u_2,u_1}^{\mathsf{F}_1}$$

▶ A linear trail is a sequence $(u_1, u_2, \ldots, u_{r+1})$ and has correlation $\prod_{i=1}^r C_{u_{i+1}, u_i}^{F_i}$

Most analysis relies on the assumption that there exist a set Λ of 'dominant trails':

$$C_{u_{r+1},u_1}^{\mathsf{F}} = \sum_{u \in \Lambda} \prod_{i=1}^{r} C_{u_{i+1},u_i}^{\mathsf{F}_i} + \varepsilon$$

Linear trails Example

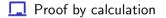


▶ To analyze trails we need to determine C^{k_i} , C^S and C^P

Correlation matrices Bricklayer functions

• If $F(x_1||x_2) = F_1(x_1)||F_2(x_2)$, then

$$C_{v_1 \| v_2, u_1 \| u_2}^{\mathsf{F}} = C_{v_1, u_1}^{\mathsf{F}_1} C_{v_2, u_2}^{\mathsf{F}_2}$$



Correlation matrices Bricklayer functions

• If $F(x_1||x_2) = F_1(x_1)||F_2(x_2)$, then

$$C_{v_1 \| v_2, u_1 \| u_2}^{\mathsf{F}} = C_{v_1, u_1}^{\mathsf{F}_1} C_{v_2, u_2}^{\mathsf{F}_2}$$

Proof by calculation

• Equivalently:
$$C^{\mathsf{F}} = C^{\mathsf{F}_1} \otimes C^{\mathsf{F}_2}$$

▶ For the S-box layer: $C^S = C^S \otimes C^S \otimes C^S$

Correlation matrices

Translations and linear functions

• If
$$F(x) = x + k$$
, then

$$C_{v,u}^{\mathsf{F}} = egin{cases} (-1)^{v^{\mathsf{T}}k} & ext{if } u = v \\ 0 & ext{else} \end{cases}$$

Correlation matrices

Translations and linear functions

► If
$$F(x) = x + k$$
, then

$$C_{v,u}^{\mathsf{F}} = \begin{cases} (-1)^{v^{\mathsf{T}}k} & \text{if } u = v \\ 0 & \text{else} \end{cases}$$

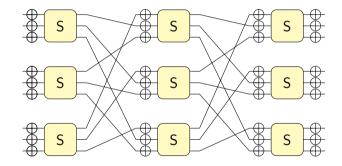
🔲 Proof

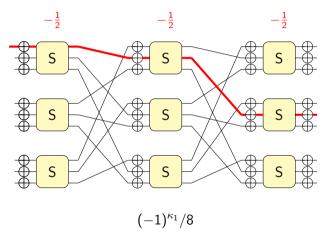
▶ If
$$\mathsf{F}(x) = Mx$$
 with $M \in \mathbb{F}_2^{m imes n}$ then

$$C_{v,u}^{\mathsf{F}} = egin{cases} 1 & ext{if } u = M^{\mathsf{T}}v \ 0 & ext{else} \end{cases}$$

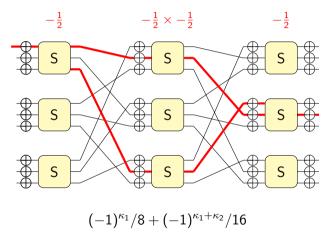
🔲 Proof

• Bit permutation P satisfies $P^{T} = P^{-1}$

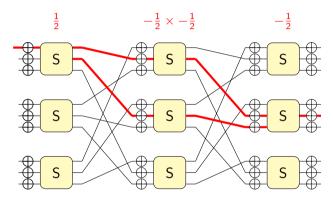




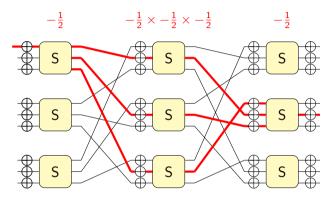
with $\kappa_1 = k_{1,1} + k_{2,2} + k_{3,5} + 1$



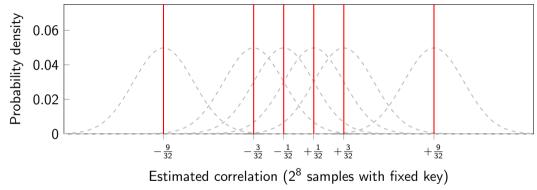
with $\kappa_1 = k_{1,1} + k_{2,2} + k_{3,5} + 1$, $\kappa_2 = k_{2,8} + k_{3,4}$



 $(-1)^{\kappa_1/8} + (-1)^{\kappa_1+\kappa_2}/16 + (-1)^{\kappa_1+\kappa_3}/16$ with $\kappa_1 = k_{1,1} + k_{2,2} + k_{3,5} + 1$, $\kappa_2 = k_{2,8} + k_{3,4}$ and $\kappa_3 = k_{2,5} + k_{3,6}$

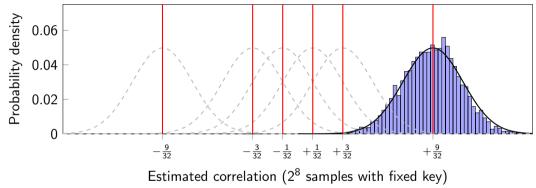


 $(-1)^{\kappa_1/8} + (-1)^{\kappa_1+\kappa_2}/16 + (-1)^{\kappa_1+\kappa_3}/16 + (-1)^{\kappa_1+\kappa_2+\kappa_3}/32$ with $\kappa_1 = k_{1,1} + k_{2,2} + k_{3,5} + 1$, $\kappa_2 = k_{2,8} + k_{3,4}$ and $\kappa_3 = k_{2,5} + k_{3,6}$



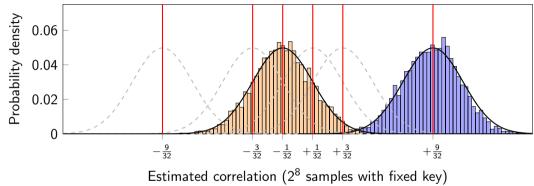
$$\blacktriangleright \ C^{\mathsf{F}}_{\texttt{001,001}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \ \pm \ \frac{1}{32}, \pm \ \frac{3}{32}, \pm \ \frac{9}{32} \right\}$$

Correlation reveals something about the key (but we will see better methods later)



$$\blacktriangleright \ C^{\mathsf{F}}_{\texttt{001,001}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \ \pm \ \frac{1}{32}, \pm \ \frac{3}{32}, \pm \ \frac{9}{32} \right\}$$

Correlation reveals something about the key (but we will see better methods later)



$$\blacktriangleright \ C^{\mathsf{F}}_{\texttt{001,001}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \ \pm \ \frac{1}{32}, \pm \ \frac{3}{32}, \pm \ \frac{9}{32} \right\}$$

Correlation reveals something about the key (but we will see better methods later)

Cost analysis

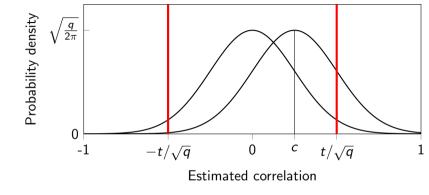
Using q independent samples:

$$\widehat{oldsymbol{c}} = rac{1}{q} \sum_{i=1}^q (-1)^{u^{\mathsf{T}} oldsymbol{x}_i + v^{\mathsf{T}} oldsymbol{y}_i}$$

► Simplifications:

- -q is not too small and correlation c is not too large
- Correlation is zero for wrong key guesses
- ▶ Distribution of \hat{c} is close to normal with mean c and variance $(1 c^2)/q \approx 1/q$
- Hypothesis test: $|\hat{c}| \ge t/\sqrt{q}$?

Cost analysis



True-positive probability $P_{S} = \Phi(c\sqrt{q} - t) + \Phi(-c\sqrt{q} - t)$

False-positive probability $P_{\mathsf{F}} = 2\Phi(-t)$

Cost analysis

Eliminating t gives

$$P_{\mathsf{S}} = \Phiig(\Phi^{-1}(P_{\mathsf{F}}/2) + c\sqrt{q}ig) + \Phiig(\Phi^{-1}(P_{\mathsf{F}}/2) - c\sqrt{q}ig)$$

• If $|c|\sqrt{q}$ is large enough, one of both terms is dominant so

$$q = \left(\frac{\Phi^{-1}(P_{\mathsf{S}}) - \Phi^{-1}(P_{\mathsf{F}}/2)}{c}\right)^2$$

If c depends on the key, need to average the success probability

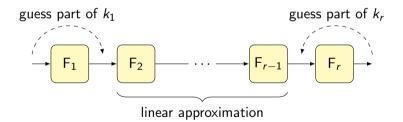
> This is essentially optimal *but important assumptions are made*

Key recovery

Correlation depends on the key, and this can be used for key-recovery Extreme case with one dominant trail

 $C_{v,u}^{\mathsf{F}} \approx (-1)^{w^{\mathsf{T}}k} c$

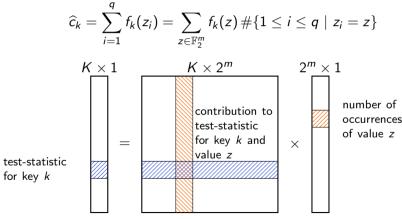
• Guessing key material from the first or last round is often more powerful



Naive cost: O(qK) for K candidate keys if the distinguisher uses q data on average P_FK incorrect candidates remain

Key recovery Matsui's method

Samples (x₁, y₁),..., (x_q, y_q) → reduced values z₁,..., z_q ∈ ℝ₂^m
 For candidate key k, the estimated correlation is of the form



• Cost: $O(q + K2^m)$ time and $O(q + K + 2^m)$ memory

Further topics

Table of contents of Linear Cryptanalysis

- 1. Introduction
- 2. Correlation matrices
- 3. Optimization of linear trails
- 4. Statistics of linear cryptanalysis
- 5. Key-recovery techniques
- 6. Multiple linear cryptanalysis
- 7. Optimal statistical testing
- 8. Zero-correlation approximations
- 9. Miscellaneous extensions
- 10. Functions on Abelian groups
- 11. Geometric approach