Linear and differential cryptanalysis

Tim Beyne

tim@cryptanalysis.info

KU Leuven

March 11, 2025


tim@cryptanalysis.info

Differential cryptanalysis

42



Overview

» Differentials and differential characteristics
» Quasidifferential transition matrices

» Quasidifferential trails

» Cost analysis

» Key-recovery techniques

Y .
# Exercises
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Differentials

» Probabilistic relation between an input difference a and an output difference b
F(x+a)~F(x)+b

» Pair (a, b) of differences a € F5 and b € 5" determines the differential
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Differentials

» Probabilistic relation between an input difference a and an output difference b
F(x+a)~F(x)+b

» Pair (a, b) of differences a € F5 and b € 5" determines the differential

» If F is a uniform random function, then the number of inputs x such that
F(x 4+ a) = F(x) + b is 2"/2™ on average

» Probability of a differential:

p:#{xEFg | F(x + a) = F(x) + b}

5 = Pr [F(x + a) = F(x) + b]
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Differentials
Example

> 3-bit S-box S: F3 — F3

x 000 001 010 O11
S(x) 111 010 100 101

100
001

101 110
110 011

111
000

» Differential (a, b)) = (001,001)
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Differentials
Example

> 3-bit S-box S: F3 — F3

X 000 001 010 011
S(x) 111 010 100 101

100
001

101

110

111

110 011 000

» Differential (a, b)) = (001,001)

» Probability Pry [S(x +a) =S(x) + b] = %

1
4
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Differentials

Distinguishers
» Sample g input pairs (xi,x1 + a), ..., (Xq, Xqg + a) at random
» Average number of pairs with output difference b is pg

» g~ 1/p samples are enough for a distinguisher because right pairs are uncommon
(assuming p is not too small or large)

@ Number of samples depends on true- and false-positive probabilities (see later)
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Differentials

IS
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Differentials

— — D
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g S S S &
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) __ D

Propagation through a sequence of operations?
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Differentials
Example

S SE

Pr[S?(x + a) = S?(x) + b] ~ Pr[S(x + a) = S(x) 4+ c and S(y + ¢) = S(y) + b]

@ Pretend that x and y are independent:

Pr[S?(x + a) = S?(x) + b] % Pr[S(x + a) = S(x) + ¢] x Pr[S(y + ¢) = S(y) + b]
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Differentials
Example

340

Pr[S?(x + a) = S?(x) + b] ~ Pr[S(x + a) = S(x) 4+ c and S(y + ¢) = S(y) + b]

@ Pretend that x and y are independent:

Pr[S?(x + a) = S?(x) + b] % Pr[S(x + a) = S(x) + ¢] x Pr[S(y + ¢) = S(y) + b]

» For example: a=b=c =001 gives1/4 x1/4=1/16
» Unfortunately, this is wrong (the correct result is 1/4)
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Differentials

Example

QYo

X y

S S

Pr[S?(x + 001) = S?(x) + 001]

Pr[S(x 4+ 001) = S(x) + 001 and S(y + 001) = S(y) + 001] +
Pr[S(x +001) = S(x) + 011 and S(y + 011) = S(y) + 001] +
Pr[S(x + 001) = S(x) + 101 and S(y + 101) = S(y) + 001] +
Pr[S(x + 001) = S(x) + 111 and S(y + 111) = S(y) + 001]

1 1 1 1

6716 16 16
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Differentials

Example

QYo

X y
S S

Pr[S?(x 4+ 011) = S?(x) + 011]

Pr[S(x + 011) = S(x) + 001 and S(y + 001) = S(y) + 011] +
Pr[S(x + 011) = S(x) + 010 and S(y + 010) = S(y) + 011] +
Pr[S(x + 011) = S(x) 4+ 101 and S(y + 101) = S(y) + 011] +
Pr[S(x + 001) = S(x) + 110 and S(y + 110) = S(y) + 001]

1 1 1 1

6716 16 16

» Unfortunately, this is still wrong (the correct result is 0)

P It is not reasonable to assume independence
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Differential characteristics

» Suppose F=F,0---0F,0F; and let x; = F;(x;_1) with xo = x

» Law of total probability:

PriF(x +a1) = F(x) + ara]l = > Pr[A Fi(xi + ai) = F(x;) + ai1]

a2,...,ar

» A sequence (a1, a2,...,ar+1) is called a differential characteristic

» How to calculate the probability of a characteristic?
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Quasidifferential transition matrices
» 227 x 227 matrix corresponding to F: F3 — F3
D(Fv’b)’(u’a) = (2 F)’(r [VTF(x) =u'x | F(x+a)=F(x)+ b] — 1)
x Pr [F(x + a) = F(x) + b]

(v, 2)
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Quasidifferential transition matrices

Example

0

8 -

16

24

32 1

40 1

48 4

56

64

'-3'}:: -
e
i :E .
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Quasidifferential transition matrices
Multiplication property

» If F=F,o0F, then
DF — DF2 DF1
[.1 Proof by calculation

» This is the most important property of quasidifferential transition matrices

» There are more conceptual (but more abstract) proofs without calculation
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Quasidifferential transition matrices

Multiplication property: example

24 x - -

40 4 LR R - -

L I | = r;_;J
o I;II.I. hl.-.l.

56

64 e

o PR TRILR:

24 A

32 4

40 1




Quasidifferential trails
» If F=F,0---Fy0Fy, then DF = DFr... DF2DF1 5o

DF = > DY ...DF2 _ ph

Wr+1,W1 Wr+1,Wr w3, w2 T wW2,W1
with w; = (u;, a;) for i € {1,...,r}

» A quasidifferential trail is a sequence (w1, ..., w,+1) with correlation
r F;
Hi:l Dwi+17wl‘

» Analysis relies on the assumption that there exists a set A of ‘dominant trails':

r
F _ F;
Dwr+1,W1 - Z H Dwi+17wi +e

wel i=1
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Quasidifferential trails

> D(F(),a,+1),(0,a1) is the probability of the differential (a1, ar+1)
» Quasidifferential trails can be used to compute the probability of a differential

» Quasidifferential trails can be used to compute the probability of a characteristic:

Z H U/+1»8/ 1),(ui,ar)

Proof: similar as for the multiplication property (exercise)
visual proof (L)
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Quasidifferential trails

Example
e — ol il
% S b S D S b
— T @";}" @ — @
) S w5
% S b S D S b
— T @";}" @ — @
SR ST S
% S b S D S b
T @"\—J" @ -/ @

Dk DS DP Dk DS DP Dk DS Dk

» To analyze trails we need to determine D% DS and DP
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Quasidifferential trails
Bricklayer functions

> |If F(X1HX2) = F]_(X]_)HF2(X2), then

DF _
(v1llva,b1llb2),(u1t2,a1][a2) —

[.1 Proof by calculation
» Equivalently, DF = DFr ® D>

» For the S-box layer: DS = D° ® D° ® D°

F
D(Vll,b1),(ul,al)

Fa

D(Vz,bz),(tu,az)
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Quasidifferential trails
Translations and linear functions

> If F(x) = x + k, then

[l Proof

(=1)*'% ifu=vanda=b

0 else.
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Quasidifferential trails
Translations and linear functions

> If F(x) = x + k, then

DF _ (—l)VTk fu=vanda=0>b
G else.

[l Proof

> If F(x) = Mx, then

F B 1 fu=MT"vand b= Ma
(v.b),(w.a) = 0 else.

[l Proof
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Quasidifferential trails
Example: 3-round differential (characteristic 1)




Quasidifferential trails
Example: 3-round differential (characteristic 1)

with kK1 = kog + k3.4
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Quasidifferential trails
Example: 3-round differential (characteristic 1)

1 1

with K1 = ko g + k3.4,

1
56 T (—1)'“? + (—1)K2f

ko = ko5 + k36

PP OO o



Quasidifferential trails

Example: 3-round differential (characteristic 1)
1
2

1 1 1

5% TN (1) 5

with K1 = kog + k34, ko = ko5 + k36

+ (_1)l€1+1€2 1

28

60



Quasidifferential trails
Example: 3-round differential (characteristic 2)

dbb b o

I

S
S
S

Bl
Bl

Lo

o] o]

ENTES

PHO PP e
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Quasidifferential trails

Example: 3-round differential (characteristic 2)

—
A= 'a)
X
Bl
NI

with K1 = ko g + k3, k3 = ko2 + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 2)
1

® bx-ixd ;
-
% S S b
b
g TR
S S &
& o hyn::¢
g A E
S S <&
& 2 2
1 i a1 o 1
% T (=1) 1+32—8+(—1) 59

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 2)

1 1

— 4+ (_]_)Nz + (_1)l€1+1€2+l€3_

29
with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 3)

dbb b o

I

S
S
S

Bl
Bl

Lo

Ll G

ENTES

PHO PP e
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Quasidifferential trails

Example: 3-round differential (characteristic 3)

X

-
A= 'a)
INTSS
=

with k2 = ko5 + k36, k3 = koo + k35

PP OO o
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Quasidifferential trails
Example: 3-round differential (characteristic 3)

: bcdx-p
-
% S S b
_—— b
g TR
S S &
& o hyn::¢
g TN
S S <&
& 2 2
1 rootra 1 w1
% T (=1) 2+32—8+(—1) 59

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 3

~—

1 1

— 4+ (_1)'€1 + (_1)K1+N2+K37

29

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 4)

Bl
Bl
Bl
ENTES

dbb b o

ENTES

PHO PP e
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Quasidifferential trails
Example: 3-round differential (characteristic 4)
X

= bxdxd =

B¢ s B

-4 5 B

4 5 5
Ly L

with k1 = kog + k3 4, K3 = ko2 + k35

PP OO o
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Quasidifferential trails
Example: 3-round differential (characteristic 4)
X

- bxixl -4

D

% S b

- b

T T b

%Z S S b

-6 . S

T T b

%Z S S b

- o T
1 K K 1 K K 1
ﬁ_i_(_l) 1+ 3@ +(_1) 2+ 3@

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails

Example: 3-round differential (characteristic 4)
1 X
4

1
516

IR S

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential

» Overall probability depends on three key bits

o (1 (1) /2)(1 + (-1)2/2)
+ o (L (C )L (1))

+ o5 (L (CLF )L (1))

_ ]_+(_1)n1+/€3)(1+(_1)n2+n3)
cy 1 3 9 1
256" 64’ 128’ 256 16

A Characteristics with > 4 active S-boxes can contribute significantly
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Quasidifferential trails
Example: 3-round differential

©
~

ot
w
T

o
[
T

Probability density
o
N
I

o

L 1 3 9 L
256 64 128 256 16

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)
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Quasidifferential trails
Example: 3-round differential

©
~

ot
w
T

o
[
T

Probability density
o
N
I

e T WM

L 1 3 9 L
256 64 128 256 16

o

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)
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Quasidifferential trails
Example: 3-round differential

> 04\

= b

g 0.3

©

>

£ 0.2

0

2

; " W

o 0 | [ » S S H ﬂ | !
1 1 3 9 1
256 64 128 256 16

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)
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Cost analysis

» Using g independent samples x1, ..., x4 (so 2q chosen plaintexts):
~ 1 .
pza#{lﬁléq | F(xi +a) = F(x;) + b}

» Simplifications:

— pq is not too small and probability p is not too large

— Probability is ep for wrong keys

» Distribution of p is close to normal with mean p and variance p(1 — p)/q ~ p/q

» Hypothesis test: p > ep + t\/ep/q
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Cost analysis

Probability density

LN D

I
ep  p eptt\/ep/q

Estimated probability

[] True-positive probability: Ps = ®((1 —¢),/pq — t\/€)

» False-positive probability: Pr = ®(—t)
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Cost analysis
» Eliminating t gives

Ps = (¢ 1 (Pe)vE + (1 — €)v/pq)

» Inverting this gives

1 <¢—1(PS) . <D—1(PF)\@>2

qz; 1—¢

> If p depends on the key, need to average the formulas above

» 1/c is sometimes called the ‘signal-to-noise ratio’

@ This is essentially optimal but important assumptions are made
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Key recovery
» If one characteristic is dominant:

(a) Differential probability depends on the key

(b) Part of the key can be deduced from the output difference
» Guessing key material from the first or last round is often more powerful

guess part of kq guess part of k,

e

differential
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Key recovery

» Basic procedure

— Count the number of right pairs per candidate key

— Filter out invalid candidate keys using the hypothesis test

> For K candidate keys, PeK incorrect candidates remain

» Optimizations of the counting phase
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Further topics

>

| 4

Optimization of differential characteristics and quasidifferential trails
Key-recovery techniques

Multiple differentials

Impossible differentials

Truncated differentials

Hash function cryptanalysis

Geometric approach
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