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Overview

▶ Differentials and differential characteristics

▶ Quasidifferential transition matrices

▶ Quasidifferential trails

▶ Cost analysis

▶ Key-recovery techniques

v Exercises
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Differentials

▶ Probabilistic relation between an input difference a and an output difference b

F(x + a) ≈ F(x) + b

▶ Pair (a, b) of differences a ∈ Fn
2 and b ∈ Fm

2 determines the differential

▶ If F is a uniform random function, then the number of inputs x such that
F(x + a) = F(x) + b is 2n/2m on average

▶ Probability of a differential:

p =
#
{
x ∈ Fn

2 | F(x + a) = F(x) + b
}

2n
= Pr

x

[
F(x + a) = F(x) + b

]
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Differentials
Example

▶ 3-bit S-box S: F3
2 → F3

2

x 000 001 010 011 100 101 110 111
S(x) 111 010 100 101 001 110 011 000

▶ Differential (a, b) = (001, 001)

S

▶ Probability Prx
[
S(x + a) = S(x) + b

]
= 2

8 = 1
4
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Differentials
Distinguishers

▶ Sample q input pairs (x1, x1 + a), . . . , (xq, xq + a) at random

▶ Average number of pairs with output difference b is pq

▶ q ≈ 1/p samples are enough for a distinguisher because right pairs are uncommon
(assuming p is not too small or large)

�
Number of samples depends on true- and false-positive probabilities (see later)
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Differentials

S

S

S

S

S

S

S

S

S

S

1
4

Propagation through a sequence of operations?
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Differentials
Example

S S

x yx y

Pr[S2(x + a) = S2(x) + b] ≈ Pr[S(x + a) = S(x) + c and S(y + c) = S(y) + b]

�
Pretend that x and y are independent:

Pr[S2(x + a) = S2(x) + b]
ÿ≈ Pr[S(x + a) = S(x) + c]× Pr[S(y + c) = S(y) + b]

▶ For example: a = b = c = 001 gives 1/4× 1/4 = 1/16

▶ Unfortunately, this is wrong (the correct result is 1/4)
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Differentials
Example

S S

x y

Pr[S2(x + 001) = S2(x) + 001]

= Pr[S(x + 001) = S(x) + 001 and S(y + 001) = S(y) + 001] +

Pr[S(x + 001) = S(x) + 011 and S(y + 011) = S(y) + 001] +

Pr[S(x + 001) = S(x) + 101 and S(y + 101) = S(y) + 001] +

Pr[S(x + 001) = S(x) + 111 and S(y + 111) = S(y) + 001]

ÿ≈ 1

16
+

1

16
+

1

16
+

1

16

▶ Unfortunately, this is still wrong (the correct result is 0)

▶ It is not reasonable to assume independence
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Differentials
Example

S S

x y

Pr[S2(x + 011) = S2(x) + 011]

= Pr[S(x + 011) = S(x) + 001 and S(y + 001) = S(y) + 011] +

Pr[S(x + 011) = S(x) + 010 and S(y + 010) = S(y) + 011] +

Pr[S(x + 011) = S(x) + 101 and S(y + 101) = S(y) + 011] +

Pr[S(x + 001) = S(x) + 110 and S(y + 110) = S(y) + 001]

ÿ≈ 1

16
+

1

16
+

1

16
+

1

16

▶ Unfortunately, this is still wrong (the correct result is 0)

▶ It is not reasonable to assume independence
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Differential characteristics

▶ Suppose F = Fr ◦ · · · ◦ F2 ◦ F1 and let x i = Fi (x i−1) with x0 = x

▶ Law of total probability:

Pr[F(x + a1) = F(x) + ar+1] =
∑

a2,...,ar

Pr
[∧r

i=1Fi (x i + ai ) = F(x i ) + ai+1

]

▶ A sequence (a1, a2, . . . , ar+1) is called a differential characteristic

▶ How to calculate the probability of a characteristic?
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Quasidifferential transition matrices

▶ 22m × 22n matrix corresponding to F: Fn
2 → Fm

2

DF
(v ,b),(u,a) =

(
2 Pr

x

[
vTF(x) = uTx | F(x + a) = F(x) + b

]
− 1
)

× Pr
x

[
F(x + a) = F(x) + b

]

DF
(v ,b),(u,a)

(v , b)

(u, a)
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Quasidifferential transition matrices
Example
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Quasidifferential transition matrices
Multiplication property

▶ If F = F2 ◦ F1, then
DF = DF2DF1

� Proof by calculation

▶ This is the most important property of quasidifferential transition matrices

▶ There are more conceptual (but more abstract) proofs without calculation
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Quasidifferential transition matrices
Multiplication property: example
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Quasidifferential trails

▶ If F = Fr ◦ · · ·F2 ◦ F1, then DF = DFr · · ·DF2DF1 , so

DF
ϖr+1,ϖ1

=
∑

ϖ2,...,ϖr

DFr
ϖr+1,ϖr

· · ·DF2
ϖ3,ϖ2

DF1
ϖ2,ϖ1

with ϖi = (ui , ai ) for i ∈ {1, . . . , r}

▶ A quasidifferential trail is a sequence (ϖ1, . . . , ϖr+1) with correlation∏r
i=1D

Fi
ϖi+1,ϖi

▶ Analysis relies on the assumption that there exists a set Λ of ‘dominant trails’:

DF
ϖr+1,ϖ1

=
∑

ϖ∈Λ

r∏

i=1

DFi
ϖi+1,ϖi

+ ε
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Quasidifferential trails

▶ DF
(0,ar+1),(0,a1)

is the probability of the differential (a1, ar+1)

▶ Quasidifferential trails can be used to compute the probability of a differential

▶ Quasidifferential trails can be used to compute the probability of a characteristic:

∑

u2,...,ur

r∏

i=1

DFi

(ui+1,ai+1),(ui ,ai )

Proof: similar as for the multiplication property (exercise)
visual proof (�)
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Quasidifferential trails
Example

S

S

S

S

S

S

S

S

S

Dk1 DS DP Dk2 DS DP Dk3 DS Dk4

▶ To analyze trails we need to determine Dki , DS and DP
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Quasidifferential trails
Bricklayer functions

▶ If F(x1∥x2) = F1(x1)∥F2(x2), then

DF
(v1∥v2,b1∥b2),(u1∥u2,a1∥a2) = DF1

(v1,b1),(u1,a1)
DF2

(v2,b2),(u2,a2)

� Proof by calculation

▶ Equivalently, DF = DF1 ⊗ DF2

▶ For the S-box layer: DS = DS ⊗ DS ⊗ DS
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Quasidifferential trails
Translations and linear functions

▶ If F(x) = x + k , then

DF
(v ,b),(u,a) =

{
(−1)v

Tk if u = v and a = b

0 else.

� Proof

▶ If F(x) = Mx , then

DF
(v ,b),(u,a) =

{
1 if u = MTv and b = Ma

0 else.

� Proof

59



Quasidifferential trails
Translations and linear functions

▶ If F(x) = x + k , then

DF
(v ,b),(u,a) =

{
(−1)v

Tk if u = v and a = b

0 else.

� Proof

▶ If F(x) = Mx , then

DF
(v ,b),(u,a) =

{
1 if u = MTv and b = Ma

0 else.

� Proof

59



Quasidifferential trails
Example: 3-round differential (characteristic 1)
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Quasidifferential trails
Example: 3-round differential (characteristic 2)
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Example: 3-round differential (characteristic 2)
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Quasidifferential trails
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Quasidifferential trails
Example: 3-round differential (characteristic 3)
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Quasidifferential trails
Example: 3-round differential (characteristic 3)
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Quasidifferential trails
Example: 3-round differential (characteristic 3)
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Quasidifferential trails
Example: 3-round differential (characteristic 3)
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Quasidifferential trails
Example: 3-round differential (characteristic 4)
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Quasidifferential trails
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Quasidifferential trails
Example: 3-round differential

▶ Overall probability depends on three key bits

1

26
(1 + (−1)κ1/2)(1 + (−1)κ2/2)

+
1

28
(1 + (−1)κ1+κ3)(1 + (−1)κ1/2)

+
1

28
(1 + (−1)κ2+κ3)(1 + (−1)κ2/2)

+
1

210
(1 + (−1)κ1+κ3)(1 + (−1)κ2+κ3)

∈
{

1

256
,
1

64
,

3

128
,

9

256
,
1

16

}

. Characteristics with ≥ 4 active S-boxes can contribute significantly
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Quasidifferential trails
Example: 3-round differential

1
256

1
64

3
128

9
256

1
16

0

0.1

0.2

0.3

0.4

Estimated probability (28 samples with fixed key)

P
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b
ab
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ty

d
en
si
ty

▶ Probability reveals something about the key (but we will see better methods later)
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Quasidifferential trails
Example: 3-round differential

1
256

1
64

3
128

9
256

1
16

0

0.1

0.2

0.3

0.4

Estimated probability (28 samples with fixed key)

P
ro
b
ab
ili
ty

d
en
si
ty

▶ Probability reveals something about the key (but we will see better methods later)

65



Cost analysis

▶ Using q independent samples x1, . . . , xq (so 2q chosen plaintexts):

p̂ =
1

q
#
{
1 ≤ i ≤ q | F(x i + a) = F(x i ) + b

}

▶ Simplifications:

– pq is not too small and probability p is not too large

– Probability is εp for wrong keys

▶ Distribution of p̂ is close to normal with mean p and variance p(1− p)/q ≈ p/q

▶ Hypothesis test: p̂ ≥ εp + t
√
εp/q
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Cost analysis

εp p εp+t
√

εp/q
0

√
q

2πp

√
q

2πεp

Estimated probability

P
ro
b
ab
ili
ty

d
en
si
ty

� True-positive probability: PS = Φ((1− ε)
√
pq − t

√
ε)

▶ False-positive probability: PF = Φ(−t)
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Cost analysis

▶ Eliminating t gives

PS = Φ
(
Φ−1(PF)

√
ε+ (1− ε)

√
pq
)

▶ Inverting this gives

q =
1

p

(
Φ−1

(
PS

)
− Φ−1(PF)

√
ε

1− ε

)2

▶ If p depends on the key, need to average the formulas above

▶ 1/ε is sometimes called the ‘signal-to-noise ratio’

�
This is essentially optimal but important assumptions are made
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Key recovery

▶ If one characteristic is dominant:

(a) Differential probability depends on the key

(b) Part of the key can be deduced from the output difference

▶ Guessing key material from the first or last round is often more powerful

F1 F2 . . . Fr−1 Fr

guess part of krguess part of k1

differential
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Key recovery

▶ Basic procedure

– Count the number of right pairs per candidate key

– Filter out invalid candidate keys using the hypothesis test

▶ For K candidate keys, PFK incorrect candidates remain

▶ Optimizations of the counting phase
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Further topics

▶ Optimization of differential characteristics and quasidifferential trails

▶ Key-recovery techniques

▶ Multiple differentials

▶ Impossible differentials

▶ Truncated differentials

▶ Hash function cryptanalysis

▶ Geometric approach
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