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Abstract

The theory of linear cryptanalysis is revisited and generalized in light of recent
developments in symmetric-key cryptography. Trade-offs in the design of lightweight
cryptographic primitives have enabled new attacks such as block cipher invariants,
and have renewed the interest in long-standing problems such as the effective use
of nonlinear approximations in cryptanalysis. These developments are intrinsically
related to linear cryptanalysis in the weak key model. In addition, permutation-based
cryptography – which is based on keyless primitives – is gaining traction.

In response to these urgent tendencies, the present thesis develops a pervasive
generalization of linear cryptanalysis. The proposed “geometric approach” enables a
uniform treatment of many variants of the classical linear attack and is suitable for
use in the keyless and weak key models of analysis. The new framework additionally
facilitates novel extensions to linear cryptanalysis. Furthermore, it is applied to
resolve problems related to the use of nonlinear approximations. As a further
contribution, the problem of proving security against linear cryptanalysis is revisited
in the weak key model.
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Samenvatting

De grondslagen van lineaire cryptanalyse worden herbekeken en veralgemeend in het
licht van recente ontwikkelingen in de symmetrische-sleutel cryptografie. Afwegingen
bij het ontwerp van lichtgewicht cryptografische primitieven hebben geleid tot nieuwe
aanvallen zoals blokcijfer invarianten, en hebben de interesse voor klassieke problemen
zoals het gebruik van niet-lineaire benaderingen in de cryptanalyse heropgewekt. Deze
ontwikkelingen zijn intrinsiek verbonden met de beschrijving van lineaire cryptanalyse
in het zwakke sleutel model. Bovendien wint permutatie-gebaseerde cryptografie –
die gebruikmaakt van primitieven zonder sleutel – aan belang.

Als reactie op deze dwingende tendensen ontwikkelt de voorliggende thesis een
doortastende veralgemening van lineaire cryptanalyse. De voorgestelde “meetkundige
aanpak” laat een uniforme behandeling van een groot aantal varianten van de klassieke
lineaire aanval toe en is geschikt voor gebruik in het sleutel-loze en zwakke sleutel
model. Bovendien maakt het nieuwe raamwerk bijkomende uitbreidingen van lineaire
cryptanalyse mogelijk en leidt het tot de oplossing van problemen gerelateerd aan het
gebruik van niet-lineaire benaderingen. Ten slotte worden pogingen tot het bewijzen
van veiligheid ten aanzien van lineaire cryptanalyse heroverwogen in de context van
het zwakke sleutel model.
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Chapter 1

Introduction

Symmetric-key cryptography enables secure storage of information, confidential and
authenticated communication, and many other indispensable technologies. At the
core of all practical encryption schemes are carefully designed components called
primitives. This thesis is concerned with the security assessment or cryptanalysis
of these primitives. Specifically, in this thesis, the theory of linear cryptanalysis is
reexamined and generalized in light of recent developments.

This chapter starts by delineating the context of the thesis: Section 1.1 discusses
the role of primitives in symmetric-key encryption and the design requirements origi-
nating therefrom. The motivation for a general reexamination of linear cryptanalysis
stems from a number of recent trends and related open problems in symmetric-key
cryptography, which are reviewed in Section 1.2. Finally, Section 1.3 clarifies the
overall structure of this thesis and anticipates its main contributions.

1.1 Secret-key Cryptography
As mentioned above, secret-key cryptography underpins a number of basic technolo-
gies. The most familiar functionality is provided by encryption schemes, which allow
the user to transfer the confidentiality of a potentially long message (a string of bits)
to the secrecy of a short key (another string of bits).

However, for most applications, confidentiality is not sufficient. It is also desirable
to ensure the integrity and authenticity of messages. Authenticated encryption is
generally achieved by appending a short tag to the ciphertext, which can be verified
upon decryption. The recently concluded CAESAR competition [11] and the ongoing
lightweight cryptography standardization project of the U.S. National Institute of
Standards and Technology (NIST) [8] have spurred the development of authenticated
encryption with associated data (AEAD) algorithms.

Most1 (authenticated) encryption schemes operate by subdividing the message
into blocks, which are then processed by a construction or “mode of operation”
involving one or more primitives operating on fixed-size bitstrings. The most common
primitives are permutations and block ciphers. A cryptographic permutation is an

1With the exception of some stream ciphers.
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1. Introduction

invertible function satisfying certain security requirements, which will be discussed
in Section 1.1.2. Block ciphers are permutations parameterized by a key, i.e. each
value of the key specifies an invertible function. The design of block ciphers and
permutations is discussed in the next section.

Figure 1.1 shows an example of a permutation-based AEAD mode. In fact,
it is the author’s submission Elephant2 [16, 17] (joint work with Yu Long Chen,
Christoph Dobraunig and Bart Mennink) to the NIST lightweight cryptography
project. The top part is responsible for encryption: n-bit message blocks are combined
using exclusive-or with a keystream generated from an m-bit nonce N (a unique
but otherwise arbitrary value) and a 128-bit key K. The lower part of the figure
shows the generation of the t-bit tag T . The blocks Ai represent data that require
authentication but not encryption, i.e. associated data.

P

A1

mask0,2K
P

A`A

mask`A−1,2
K

· · ·

P

C1

mask0,1K
P

C`C

mask`C−1,1
K

· · · b·ct T

P

N‖0n−m

mask0,0K
P

N‖0n−m

mask`M−1,0
K

M1 M`M

C1 C`M

· · ·

Figure 1.1: An example of an AEAD mode. The depicted mode is the author’s
submission to the NIST lightweight cryptography project, Elephant. Note that
the first block of associated data A1 includes the nonce N . This figure previously
appeared in the Elephant specification [17, p. 5]

Remark. Hash functions are another important class of cryptographic functions that
can be constructed from block ciphers and permutations. However, most of the
results in this thesis relate to block ciphers and permutations as used in encryption
schemes. .

2http://cosic.be/elephant
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1.1. Secret-key Cryptography

1.1.1 Construction of Primitives

Permutations and block ciphers are designed to operate on bitstrings of fixed length,
say n bits. Hence, formally, a permutation F is a bijection F : Fn2 → Fn2 and a block
cipher EK is, for each k-bit key K ∈ Fk2, a permutation EK : Fn2 → Fn2 . Remark that
fixed-length bitstrings are represented here as elements of the vector space Fn2 . This
is deliberate, since the construction of primitives often involves operations which are
proper to Fn2 , such as addition (exclusive or).

The construction of permutations and block ciphers is similar; this is not sur-
prising, since one can think of permutations as block ciphers with a fixed key.
Nevertheless, the design of block ciphers involves some additional aspects such as the
choice of the key-schedule. Hence, the following discussion focuses on block ciphers.

Nearly all block cipher designs are round-based (also called iterative or iterated).
This means that EK is the composition of a sequence of permutations F1, F2, . . . , Fr,
where r is called the number of rounds. Each round function Fi may involve a
different key Ki. The round keys K1,K2, . . . ,Kr are derived from the master key K
using a key scheduling algorithm. The key schedule need not be complicated; for
instance, in several lightweight block ciphers, Ki = K + ci, i = 1, . . . , r with ci public
constants.

F1

K1

F2

K2

. . . Fr

Kr

S L

K2

Figure 1.2: Schematic of a typical iterated block cipher (of the SPN type).

The two most popular families of iterated designs are Feistel ciphers and substitution-
permutation networks (SPNs). For this thesis, the Feistel structure is of limited
importance so it will not be discussed here. In SPN ciphers, the round function Fi
consists of a nonlinear layer S (see below), an F2-linear map L and a key-addition
step. That is, Fi(x) = L(S(x)) + Ki as in Figure 1.2. The Rijndael family of
block ciphers, which includes the advanced encryption standard (AES), is the most
important example of such a design [46]. Note that ciphers in which round keys are
added to the state after each round are often referred to as key-alternating.

Remark. Technically, the AES is not an SPN design because its linear layer is not a
bit permutation. That is, Figure 1.2 represents a superset of the class of SPN ciphers.
Other designs such as PRESENT, Spongent-π and GIFT [7,27,28] are true SPNs.
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1. Introduction

Throughout this thesis, “SPN” will be used in the broad sense since this usage is
common in the modern literature [32,57,64,87]. .

The nonlinear layer S consists of the parallel application of multiple nonlinear
functions, each defined on a small number of bits of the state. These “small” nonlinear
functions are called substitution boxes (S-boxes). That is, S = (S1, . . . , Sm) such
that

S(x1‖x2‖ · · · ‖xm) = S1(x1)‖S2(x2)‖ · · · ‖Sm(xm),

where ‖ represents concatenation of bitvectors and Si a permutation on Fn/m2 .
In some SPN ciphers, the linear layer L is “strongly aligned” with the S-box

layer [13]. In this thesis, such ciphers will be occasionally referred to as cell-oriented.
For example, in Rijndael, the map L is linear over F2n/m . Note that L need not be
F2n/m-linear in a cell-oriented design, one counterexample is QARMA [3].

Example. Midori-64 [6] is a cell-oriented design that recurs in several examples
throughout this thesis. It has 64-bit state, which is represented as a 4 × 4 array
of 4-bit cells. The 128-bit master key K is split into two equal parts to obtain the
round keys K0 and K1. Figure 1.3 provides an overview. The values of the round
constants c1, . . . , c15 may be found in the specification [6].

K0 +K1

R1

K0

R2

K1

. . . R15

K0

S

K0 +K1

S P M

K1

c2

Figure 1.3: Schematic representation of Midori-64. This figure previously appeared
in the author’s work [14].

The nonlinear layer is as described above, with S1 = . . . = S16 = S. A hexadeci-
mal representation (as a lookup table) is given in Table 1.1.

Table 1.1: Lookup table representation of the Midori-64 S-box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

The linear layer of Midori-64 consists of two transformations. The first is the
ShuffleCell step (P in Figure 1.3), which corresponds to the following permutation
of cells:
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1.1. Secret-key Cryptography

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16

x1 x15 x10 x8

x11 x5 x4 x14

x6 x12 x13 x3

x16 x2 x7 x9

P−→

The second transformation is the MixColumn operation (M in Figure 1.1), which
amounts to the multiplication of each state column with the block matrix

M =


0 I I I
I 0 I I
I I 0 I
I I I 0

 ,

where I ∈ F4×4
2 is the identity matrix. .

The constructions discussed above are the result of careful security evaluation
using standard cryptanalytic techniques. The most popular families of such techniques
are differential [21, 22] and linear [77, 78] cryptanalysis. Differential cryptanalysis
will not be discussed in this thesis; Chapter 2 contains a detailed introduction to
linear cryptanalysis. However, before cryptanalysis can be discussed, it is necessary
to define what is meant by a “secure” primitive. This is the goal of the next section.

1.1.2 Security Model for Primitives

The security of a primitive can only be understood within the context of a mode.
Hence, only attacks on the primitive that are useful to break the mode need be
considered. Nevertheless, this does not rule out generic analysis because primitives
are often reused and in many cases cryptanalytic results are applicable across several
use-cases.

The goal of the cryptanalyst is either to recover the key (if there is one) or to
exhibit a distinguisher (subject to the restrictions above). Informally, a distinguisher
is an algorithm that tells apart a construction or primitive from its idealization.
Cryptanalysis is always conducted within a certain security model, which specifies
the capabilities of the attacker. Table 1.2 lists the most common scenarios.

Remark. The description of the “single key” model in Table 1.2 specifies that the
cost of the attack is expected to be, at least approximately, uniform over the key
space. This additional requirement is nonstandard, but nevertheless important to
clarify the difference with the weak key model. Traditional techniques such as linear
and differential cryptanalysis are usually assumed to lead to attacks that work for
any key. There are many reasons to expect that, instead, these attacks work for
most but not quite all of the keys [31, 44, 89]. Nevertheless, one does not say that
they are in the weak key setting. .

5



1. Introduction

Model Description

Ciphertext only The attacker is given the ciphertext corresponding
to several unknown plaintexts. Additional informa-
tion, such as the type of data that was encrypted,
may be available.

Known plaintext The attacker is given several plaintext/ciphertext
pairs.

Chosen plaintext The attacker chooses several plaintexts and receives
the corresponding ciphertext.

Chosen ciphertext In addition to choosing plaintexts, the attacker can
adaptively choose several ciphertexts and receives
the corresponding plaintext.

Single key The key is unknown to the adversary. The cost and
advantage of the adversary are (often implicitly)
expected to be approximately uniform over the key
space.

Weak key Part of the key may be chosen by the adversary.
Equivalently, the key is unknown to the adversary
but the attack is only expected to work for part of
the key space.

Related key [18] The adversary has access to the block cipher under
two different keys, which are somehow related. Not
all relations are allowed.

Known key [68] The key is known to the adversary. This model is
useful when the cipher is used as a public permuta-
tion or in the ideal cipher model (see Section 1.1.3).

Table 1.2: Overview of cryptanalytic evaluation models. The second part of the table
is only applicable to block ciphers.

From a practical point of view, some of the capabilities listed in Table 1.2 may
seem excessive. On the one hand, this is consistent with a conservative approach
to security. On the other hand, one can argue that practical adversaries can in fact
possess an even wider range of capabilities. For example, cryptanalysts during the
First and Second World Wars routinely exploited erroneously encrypted messages [60].

The cost of an attack is determined by various aspects:

– The computational cost, which is typically measured in terms of the number of
block cipher calls.

– The amount of memory required to execute the attack.

– The number of known/chosen plaintexts and/or ciphertexts (“data”) that are
required.

6



1.1. Secret-key Cryptography

– The success probability and false positive rate. The absolute value of the
difference between the success probability and the false positive rate is often
called the advantage.

The metrics listed above are not independent; many trade-offs are possible. For
primitives that are constructed by iterating a round function, it is also common
to report the number of rounds broken by the attack. Indeed, attacks are often
incrementally improved and initially only threaten reduced-round versions.

1.1.3 Formalizations of the Security Model

This section reviews several attempts to formalize the security of cryptographic
building blocks. The branch of cryptography that deals with these formalizations is
often designated by the broad term “provable security” [72].

When block ciphers are used, modes can often be proven secure in a reductionist
sense. That is, it is shown that breaking the mode is hard by reducing this problem to
a property of the block cipher. This model is often called the standard model [72,75].
Informally, the desired property of a block cipher in the standard model is that no
adversary with limited computational power can distinguish the cipher, when used
with a uniform random key, from a uniform random permutation with significant
advantage. Such a block cipher is said to be a pseudorandom permutation or PRP3.

Remark. The phrase “limited computational power” hides a major difficulty: finding
an appropriate definition of this terminology is challenging, especially in the non-
asymptotic setting. For example, Bernstein and Lange [12] give examples of efficient
attacks on the AES – or any other cipher – with the caveat that they require a large
amount of precomputation. They suggest, among other things, to require constructive
adversaries. The author of this thesis is inclined to go further, and would argue
that security definitions of a purely computational nature are irreconcilable with the
concrete. This is supported by the fact that there exist significant PRP distinguishers
for all common block ciphers that do not require precomputation – but these are
not realistic because, a priori, their result cannot be interpreted unless excessive
computations are performed. .

A different approach to provable security is the ideal model [72,75]. In this model,
one shows that the mode is information-theoretically secure if it is instantiated with
ideal primitives. For example, an ideal block cipher is a random permutation for
every fixed value of the key. The ideal model can be used when the primitives are
incompatible with standard security notions such as pseudorandomness, or if those
notions are not sufficiently strong. For example, in permutation-based cryptography,
the mode is built from public permutations. Finally, note that indistinguishability is
not applicable to modes which are completely public such as hash functions. Other
frameworks such as indifferentiability have been developed for this setting [79].

3In theory, the advantage is considered to be insignificant (“negligible”) if it decays asymptotically
faster than the reciprocal of any polynomial in the security parameter [72]. In practice, the security
parameter is fixed and the notion “maximum PRP advantage” is more useful.

7



1. Introduction

1.2 Open Problems and Recent Trends

The motivation for this thesis comes from a number of open problems in the crypt-
analysis and design of primitives. These problems in turn originate from several
recent trends in symmetric-key cryptography.

The widespread use of cryptography in resource-constrained settings such as
real-time and embedded computing provides a strong motivation to improve the
efficiency of primitives. The evaluation criteria, e.g. area, latency, throughput or
energy usage, strongly depend on the application [24]. The ongoing NIST lightweight
cryptography project aims to deliver a U.S. government standard for lightweight
authenticated encryption and hashing within two to four years [8].

Despite significant differences in the relevant metrics, most lightweight primitives
share a number of common characteristics. One tendency is the use of simple
key-schedules. The energy-efficient block cipher Midori-64, which was discussed in
Section 1.1.1, serves as an example. Along with other design decisions, such as the
choice of the S-boxes and the linear layer, simple key-schedules have enabled new
cryptanalytic techniques. In particular, block cipher invariants have led to powerful
weak key attacks on lightweight ciphers, including Midori-64 [14, 51, 71, 94]. This
includes the paper [14] by the author of this thesis, which received the best paper
award at ASIACRYPT 2018. The approach to invariants that was introduced in the
latter paper (explained in Section 2.4.2) underpins the frame of reference that will
be developed in this thesis.

Invariant attacks have led to renewed interest in the weak key foundations of
linear cryptanalysis, and the related open problems surrounding the use of nonlinear
approximations in cryptanalysis. This is evidenced by recent work such as that of
Beierle et al. [9], presented at FSE in March 2019.

Another trend is the increased prevalence of permutation-based cryptography.
For example, many submissions to the NIST lightweight cryptography project are
based on permutations as opposed to block ciphers – this includes the author’s
submission, Elephant [17]. Since permutations do not involve a key, a “fixed key”
approach to linear cryptanalysis is desirable. This requires a reexamination of the
classical approach to linear cryptanalysis, since it is justified based on key-averaging
arguments. It will become clear throughout this thesis that the issues surrounding
nonlinear approximations, weak keys and the fixed key model are intertwined.

Finally, a long-standing open problem in the design of symmetric-key primitives is
to prove the security of a concrete construction against linear cryptanalysis. Current
arguments at best succeed in demonstrating average-case (w.r.t. the key) security of
block ciphers. The question then arises: can resistance against linear cryptanalysis be
established in the weak key setting, or for permutations? One must then inevitably
deal with the issue of trail clustering [43], which is closely related to nonlinear
cryptanalysis.
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1.3 Outline and Goals of this Thesis
This thesis aims to address the open problems that were listed in Section 1.2. By
and large, its contributions fall into two categories. The first class of contributions is
related to the foundations of linear cryptanalysis in the weak or fixed key setting.
Specifically, a new theoretical framework for linear cryptanalysis – including general-
izations such as nonlinear cryptanalysis – is proposed. The second category of results
is related to proving the resistance of block ciphers against linear cryptanalysis in
the weak key model.

The literature on linear cryptanalysis is reviewed in Chapter 2. The main
approaches to linear cryptanalysis are discussed, including a brief discussion on key-
recovery strategies. The chapter also summarizes strategies that are used to design
primitives which are, at least heuristically, secure against linear attacks. Finally,
several variants and generalizations of linear cryptanalysis are introduced.

Chapter 3 develops a novel theoretical framework for linear cryptanalysis, which
can be termed as a “geometric approach”. The main goals are the unification and
generalization of the wide range of variants of linear cryptanalysis, within the weak
or fixed key model. Overall, a novel way of thinking about linear cryptanalysis is
sought. Several applications are discussed, including a recently proposed (previously)
open problem.

The results related to provable resistance against linear cryptanalysis are contained
in Chapter 4. The focus is primarily on deriving upper bounds – in the weak key
model – on the correlation of linear approximations over two rounds of an SPN. A
starting point is provided for extending these results to more than two rounds.

The main conclusions and realizations are summarized in Chapter 5.

9





Chapter 2

Linear Cryptanalysis

This chapter summarizes the main literature on linear cryptanalysis and its variants.
Linear approximations are discussed in Section 2.1. The classical approach to linear
key-recovery attacks is recalled in Section 2.2. Section 2.3 then discusses design
strategies that can be used to develop block ciphers which are, at least heuristically,
resistant against linear cryptanalysis. Finally, various extensions of and variations
on the basic linear attack are reviewed in Section 2.4.

Let EK be a block cipher on the vector space Fn2 and consider a nontrivial sum of
plaintext and ciphertext bits. If EK behaves as an ideal cipher, any such expression
is expected to equal zero for roughly half of the plaintexts. In linear cryptanalysis,
one attempts to find and exploit F2-linear combinations of input and output bits
that are equal to each other for significantly more or less than half of the plaintexts.

2.1 Linear Approximations

This section discusses linear approximations, which are at the core of linear crypt-
analysis. Specifically, several approaches to compute the probability of such approxi-
mations are discussed. The classical approach, due to Matsui [77, 78], is reviewed in
Section 2.1.1. Section 2.1.2 introduces correlation matrices, which were proposed by
Daemen et al. [40] as an alternative description of linear cryptanalysis.

2.1.1 Classical Approach

Linear cryptanalysis was introduced by Matsui and Yamagishi in the context of
the FEAL cipher [78] and shortly after resulted in the cryptanalysis of the DES by
Matsui [76,77]. It was inspired by the earlier work of Tardy-Corfdir and Gilbert [93].

Consider an iterative permutation F : Fn2 → Fn2 . If F is a block cipher, then fix
the key K – here we deviate from [76–78, 93] for the sake of generality. As briefly
mentioned above, in linear cryptanalysis one attempts to find masks u, v ∈ Fn2 such
that v>F (x) = u>x holds significantly more or less often than is expected for an
ideal cipher. Such a relation will be called a linear approximation of F . Let x be a
uniformly distributed random variable on Fn2 . The bias ε of a linear approximation
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2. Linear Cryptanalysis

is the quantity
ε = Pr

[
v>F (x) = u>x

]
− 1

2
. (2.1)

In linear cryptanalysis, one is thus interested in finding a linear approximation
such that |ε| is as large as possible. Once a suitable approximation of a block
cipher F has been found, this immediately yields a known-plaintext distinguisher.
Section 2.2 discusses how such a distinguisher can be turned into a key-recovery
attack. More generally, when F does not necessarily involve a secret key, good linear
approximations often lead to attacks on the mode in which F is used.

In general, computing |ε| is clearly nontrivial since the set of plaintexts Fn2 is
large (typically, n ≥ 64). Hence, one has to approximate ε – this is possible because
F is assumed to be iterative, i.e. F = Fr ◦Fr−1 ◦ · · · ◦F1. The key observation is that
the biases of linear approximations of the round functions Fi can often be computed
exactly. In order to glue together several one-round approximations, Matsui used a
heuristic approach based on the piling-up lemma [77].

Lemma 2.1 (Piling-up lemma [77]). Let z1, . . . , zr be independent random variables
on F2 with ci = 2Pr[zi = 0]− 1. Then

2Pr
[ r∑
i=1

zi = 0
]
− 1 =

r∏
i=1

ci.

Let xi+1 = F (xi) for i = 1, . . . , r. Lemma 2.1 is used as follows: the cryptanalyst
constructs a sequence of approximations v>i Fi(xi) = u>i xi such that the masks are
compatible, i.e. ui+1 = vi for i = 1, . . . , r. For each i, let zi = v>i Fi(xi) + u>i xi with
x1 uniformly random. Assuming that the random variables zi are independent, an
application of Lemma 2.1 yields the desired probability. Indeed,

r∑
i=1

zi = v>r Fr(xr) + u>1 x1.

Remark. A sequence of approximations such as in the above paragraph is called a
linear trail [40] or characteristic [19]. The former terminology will be used exclusively
in this thesis. For reasons discussed in Section 2.1.2, the product

∏r
i=1 ci will be

called the correlation of the trail. .

The reader will note that the variables zi are not, in fact, independent. This
raises the question why (and when) one should expect the piling-up approximation
to be any good. The underlying idea in Matsui’s work [77], and more explicitly
in that of Biham [19], is that F involves round keys which can be assumed to be
independent and uniformly distributed. For an iterative block cipher one can show
that, under these assumptions, the piling-up lemma yields the exact value of

Ek1,...,kr Pr
x

[
v>Ek1,...,kr(x) = u>x+

∑r
i=1 v

>
i ki

]
. (2.2)

This follows, for example, immediately from the results that will be reviewed in
Section 2.1.2. Nevertheless, (2.2) is not really an adequate justification of the piling-
up approximation. Indeed, it only seems to raise more questions. Specifically, round
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keys are not really independent and the average bias need not be equal to the bias
for a specific key. In addition, in permutation-based cryptography, there is no key.

2.1.2 Correlation Matrices

This section discusses an alternative description of linear cryptanalysis due to Daemen,
Govaerts and Vandewalle [40]. This approach is the main source of inspiration for
the geometric approach to linear cryptanalysis and its generalizations that will be
developed in Chapter 3.

Daemen et al.’s description of linear cryptanalysis starts from the notion of
correlation coefficients, which is defined below.

Definition 2.1 (Correlation coefficient [40]). The correlation coefficient C(f, g)
between Boolean functions f, g : Fn2 → F2 is the quantity

C(f, g) = 2Pr[f(x) = g(x)]− 1,

for x uniformly distributed on Fn2 .

Given a function F : Fn2 → Fm2 , Daemen et al. define a real matrix CF with
entries C(`v ◦ F, `u) where `u(x) = u>x and `u(x) = u>x for u ∈ Fn2 and v ∈ Fm2 :

CFv,u = C(`v ◦ F, `u) =
1

2n

∑
x∈Fn

2

(−1)v>F (x)+u>x. (2.3)

They call this matrix the correlation matrix of F [40]. In linear cryptanalysis, one is
interested in the entries of CF with the largest magnitude. Indeed, these correspond
to the most biased linear approximations of F .

Remark. Note that, in the above paragraph, the entries of CF are indexed by the
elements of the set Fn2 rather than by integers 1, . . . , 2n. The former notation is
more natural, because CF should be interpreted as the coordinate representation of
a linear operator on the group algebra CFn2 . .

There is – according to the author of this thesis – a more intuitive definition
of correlation matrices. Specifically, (2.3) defines the matrix CF by its coordinates.
This obscures what is really going on. The alternative approach below first appeared
in the author’s work [14] at ASIACRYPT 2018.

Definition 2.2 (Transition matrix). The transition matrix TF of a function F :
Fn2 → Fm2 is a real 2m×2n matrix such that, if a random variable x has probability mass
function p : Fn2 → [0, 1], then F (x) has probability mass function TF p. Equivalently,
TFy,x = δy,F (x).

Definition 2.3 (Correlation matrix [14]). The correlation matrix CF of a function
F is the coordinate representation of the linear map defined by TF with respect to the
character basis of the group algebra CFn2 . Specifically, the character basis consists of
the functions x 7→ (−1)u>x with u ∈ Fn2 .
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It is not hard to see that Definition 2.3 corresponds to (2.3), see for example [14].
An alternative formulation of Definition 2.3 is that CF is the Fourier transformation
of TF . Due to this fact, many properties of correlation matrices are immediate
consequences of the corresponding properties of TF . A few useful results are listed
in Theorem 2.1 below – these can also be found in [14,40].

Remark. According to Definitions 2.2 and 2.3, the matrices TF and CF represent
the same linear operator in a different basis. Alternatively, one can interpret CF as
an operator on CF̂n2 , where F̂n2 ∼= Fn2 denotes the Pontryagin dual of the group Fn2 .
This is more in line with the standard approach in mathematics, see Serre [92] and
Diaconis [47], and will be useful in Chapter 3 where Definition 2.3 will be generalized
to functions on arbitrary finite abelian groups. .

Theorem 2.1 (Properties of correlation matrices [14, 40]). Let F : Fn2 → Fm2 . Then

1. For G : Fm2 → Fl2, CG◦F = CGCF .

2. If H(x, y) = (F (x), G(y)) with G : Fk2 → Fl2, then CH = CF ⊗ CG.

3. If F is a permutation, then CF is an orthogonal matrix.

4. If F (x) = Ax+ c with A ∈ Fm×n
2 and b ∈ Fm2 , then CFu,v = (−1)u>bδv,A>u.

Proof. For (1), note that for the basis {δx}x∈Fn
2

of CFn2 , TGTF δx = δG(F (x)) =

TG◦F δx. The result then follows by taking the Fourier transformation. Similarly, (2)
follows from the trivial observation that TH = TF ⊗ TG and the separability of the
Fourier transformation. Property (3) is due to the fact that TF is a permutation ma-
trix and because the Fourier transformation is, up to scaling, orthogonal. Finally, (4)
is an immediate consequence of CFχu = χA>u+b with χu(x) = (−1)u>x the group
character corresponding to u.

The piling-up approximation can be seen to be a consequence of property (1)
in Theorem 2.1. This observation was first made by Daemen et al. [40]. Indeed, if
F = Fr ◦ Fr−1 ◦ · · · ◦ F1, then

CFur,u0 =
∑

u1,...,ur−1∈Fn
2

r∏
i=1

CFi
ui,ui−1

. (2.4)

That is, the correlation of a linear approximation is the sum of the correlations of all
possible trails within that approximation. Here, the correlation of a trail is computed
as in Lemma 2.1. Hence, the piling-up assumption is valid whenever (2.4) contains a
dominant term.

As such, the correlation matrix approach to linear cryptanalysis shows how an
estimate of the correlation of a linear approximation might be refined by taking
into account more than one trail. Nonetheless, (2.4) can be large even if no good
trails can be found. Daemen and Rijmen call this phenomenon trail clustering [43].
For block ciphers, the attacker can try to cause clustering by carefully choosing
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part of the key – this leads to weak key attacks. Note that this phenomenon is not
theoretical, see for example the author’s attack on Midori-64 [14]. Understanding
the clustering of linear trails is an important motivation for the geometric approach
to linear cryptanalysis that will be developed in Chapter 3.

2.2 Key-Recovery using the Last-Round-Trick
For this section, assume that a linear approximation over a block cipher EK is given.
Furthermore, suppose the corresponding absolute correlation is c – for simplicity of
exposition, let us assume that c is approximately constant over the set of keys.

As mentioned in Section 2.1, such an approximation results in a distinguisher
provided that c is sufficiently large. Before discussing how a distinguisher can be
turned into a key-recovery attack, it is useful to make the requirement that c is
“sufficiently large” more precise. Recall that a distinguisher compares EK to an ideal
block cipher, i.e. a collection of random permutations. Hence, the following result
provides the necessary information.

Theorem 2.2 (Daemen and Rijmen [45]). The correlation cn of a nontrivial linear
approximation over a uniform random n-bit permutation is asymptotically normally
distributed with variance 2−n. Specifically, as n→∞,

2n/2cn
D→ N (0, 1).

A more precise statement is possible: it is not hard to show that for all integers t
such that −2n−2 ≤ t ≤ 2n−2, one has [45]

Pr[cn = 22−nt] =

(
2n−1

2n−2+t

)2(
2n

2n−1

) .

For all other values of t, the probability is zero. For most practical purposes, however,
the normal approximation is sufficiently accurate.

The distinguisher works by estimating the correlation of the approximation based
on N known plaintext/ciphertext pairs, which we assume to be sampled at random
with or without replacement. For example, when using sampling with replacement,
the estimated correlation ĉ will be approximately distributed as N (c, (1− c2)/N) for
large N . Using this fact together with Theorem 2.2, one can show that the required
number of samples N to achieve a fixed success probability and false positive rate is
proportional to 1/c2 [2, 26,30,90].

Remark. The normal approximation of c that is mentioned above has its limitations:
if one samples (almost) the full codebook, one can determine the correlation nearly
exactly. In this setting the proportionality N ∝ 1/c2 is no longer valid. Instead,
with access to the full codebook, one can theoretically build a perfect distinguisher
irrespective of the value of c. In practice, however, the cryptanalyst is forced to
estimate c using the techniques discussed in Section 2.1. Hence, the model of the
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cipher is imperfect and using small values of c is not feasible. An important exception
is zero-correlation linear cryptanalysis (c = 0), which will be discussed in Section 2.4.3.
Note that this issue is closely related to the remark in Section 1.1.3. .

Linear approximations can be used for key-recovery in essentially two ways, which
are commonly referred to as Matsui’s first and second algorithm [77]. The first
algorithm is based on the observation that if the key is added to the state (as in a
key-alternating cipher) and if a single linear trail is dominant,

sign(c) = (−1)b
r∏
i=1

(−1)v>i Ki ,

with b ∈ F2 a known constant, K1, . . . ,Kr the round keys and v1, . . . , vr (intermediate)
masks. This is a consequence of Theorem 2.1, property (4). Hence, the attacker is
able to learn some linear combination of key bits.

Matsui’s second algorithm provides a more powerful approach to key-recovery. In
this method, the block cipher is split into two parts and a linear approximation over
the first part is used. For simplicity, assume the first part consists of the first r − 1
rounds. Figure 2.1 illustrates the idea: one guesses part of the last round key Kr in
order to partially decrypt the last round. For each guess, the correlation of the linear
approximation can be estimated. If a wrong key is used, one expects the correlation
to be very small – usually, wrong guesses are modeled by a random permutation.
Hence, the problem of finding the right key among all guesses of Kr is similar to
distinguishing r − 1 rounds from a random permutation.

P

Fr−1 ◦ · · · ◦ F1

Fr

C

{(Pi, Ci)}Ni=1

±c

F−1
r (C)

guess part of Kr

Figure 2.1: Matsui’s second algorithm.

The naive approach to identify the right key is to store the estimated absolute
correlation for each key guess in a large table [77, 90]. This table is sorted in
descending order and the bottom part is discarded. If k bits of Kr must be guessed,
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this procedure requires O(2kN) time. However, since N is usually much larger than
2k, a different approach is used in practice.

The following method was introduced by Matsui [76] and is based on the ob-
servation that the linear approximation is the sum of two disjoint parts: u>P and
v>F−1

r (C) with u the input mask and v the output mask. For simplicity, assume
that the ciphertext masks contains k nonzero bits. For each observed value of the
active ciphertext part, one computes the estimated correlation of u>Pi over all
plaintexts Pi having the corresponding ciphertext part. For each ciphertext part and
key guess, one then computes v>F−1

r (C). From this 2k × 2k table, the estimated
correlation for each key guess can be computed. The time complexity of this approach
is O(N + 22k). Collard et al. [38] improve this to O(N + k 2k) using an FFT-based
method for multiplication with circulant matrices.

The data requirements of Matsui’s second algorithm have been analyzed under
various assumptions [2, 26, 30, 90]. For c not too small, a good approximation is
provided by [90]

N ≈
(
Φ−1(PS) + Φ−1(1− 2−a−1)

c

)2

,

with PS the success probability and 2−a the fraction of retained keys. In prior joint
work with Tomer Ashur and Vincent Rijmen, the author of this thesis has shown that
this approximation remains reasonable when plaintext/ciphertext pairs are sampled
without replacement [2]. The latter work also discusses the breakdown of Matsui’s
second algorithm when c ≤ 2−n/2Φ−1(1− 2−a−1). There has been some controversy
regarding this subject, see Ashur’s PhD thesis [1] or the note by Selçuk [91] for an
overview.

2.3 Security Arguments for Linear Cryptanalysis
As discussed in Section 1.1, it is not known how to formally prove the security of
the primitives that are used in practical symmetric-key cryptography. However, this
does not mean that the design of primitives is arbitrary – new designs are at least
expected to resist known attacks. This section discusses three approaches that are
used to argue that a proposed primitive is secure against linear cryptanalysis.

Section 2.3.1 discusses the wide trail strategy [39,43,46,88], which is the most suc-
cessful approach to block cipher design. This strategy results in upper bounds on the
absolute correlation of trails, but it does not guarantee that all linear approximations
are weak. Section 2.3.2 reviews attempts to resolve this deficiency by bounding the
variance of the correlation for a random key – or random round constants. Finally,
Section 2.3.3 recalls Vaudenay’s decorrelation theory [101] and the resulting bounds
on the advantage of linear distinguishers.

2.3.1 Wide Trail Strategy

The wide trail strategy first appeared in Daemen’s PhD thesis [39] and was subse-
quently extended by Rijmen [88]. It underpins the design of Rijndael [42, 46]. An
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overview can be found in [43]. Below, the basic principle is recalled in the context of
linear cryptanalysis.

Consider a substitution-permutation network as in Figure 2.2. An S-box is called
active with respect to a linear trail if its output mask is nonzero [43]. For example,
in Figure 2.2, the first S-box is active and the second is not.

S1

S2

L

S3

S4

Figure 2.2: Linear trail through an eight bit function with three active S-boxes.
Nonzero bits in the masks are marked in red. The linear layer is denoted by L.

Suppose that the absolute correlation of any nontrivial linear approximation
of the S-box is less than c. If the masks of a linear trail are nonzero in positions
corresponding to the output bits of N different S-boxes, then the correlation of this
trail is clearly at most cN . The essence of the wide trail strategy is to maximize the
number of active S-boxes N [43].

If the S-boxes are permutations, the substitution step does not influence the
activity pattern. The effect of the linear layer L, however, is important. Locally, the
quality of the linear layer can be quantified by the linear branch number

BL = min
v∈Fn

2

[
wt(v) + wt(L>v)

]
,

where wt(v) denotes the number of nonzero m-bit blocks in u when the S-boxes
are m bits wide. Note that BL involves the transpose L> rather than L due to
Theorem 2.1, (4). Rijmen showed that BL is maximized by the generator matrices
of MDS codes [88]. To accurately bound the number of active S-boxes over many
rounds, additional tools are required. A popular approach is to encode the problem
as a mixed-integer linear programming problem. SAT and SMT solvers are also
commonly used [73].

The wide trail strategy can be used to show that a primitive does not contain
any good linear trails. This does not imply that all linear approximations must have
low correlation. The next section discusses attempts to obtain somewhat stronger
results.

2.3.2 Variance Bounds

Going beyond upper bounds on the correlation of individual trails, there is a series
of papers [32, 57, 63–66, 87] concerned with upper bounding the variance of the
correlation of linear approximations. Specifically, these works provide upper bounds
on the average squared correlation in key-alternating block ciphers with independent
round keys.
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The starting point for such bounds is the observation that for a key-alternating
cipher with round functions x 7→ Fi(x) +Ki for i = 1, . . . r, equality (2.4) becomes

CEK
ur,u0 =

∑
u1,...,ur−1∈Fn

2

r∏
i=1

(−1)u>i Ki CFi
ui,ui−1

.

Hence, for independent and uniformly distributed round keys, one obtains

Var[CEK
ur,u0 ] =

∑
u1,...,ur−1∈Fn

2

r∏
i=1

(CFi
ui,ui−1

)2.

In order to upper bound the above quantity, one essentially needs to ensure that
there are not too many trails with large correlation.

Remark. The assumption that round keys can be considered to be independent is
an idealization which is invalid for all block ciphers that are used in practice. Hence,
the resulting bounds are ultimately heuristic security arguments. Nevertheless, they
are an improvement over bounds on individual trails.

There is a further and arguably more important limitation of variance bounds. As
discussed in Section 2.2, the data requirements for linear cryptanalysis are generally
proportional to 1/c2 with c the correlation of the underlying linear approximation.
This has led some authors [57,62,65, a.o.] to claim that variance bounds result in
provable security against linear cryptanalysis. The problem is, of course, that the
squared correlation need not equal its expected value. Equivalently, weak key attacks
are not covered by such arguments1. Chapter 4 explores approaches to bound the
tail of the distribution of the correlation of linear approximations in order to resolve
this issue. .

It can be shown that the variance does not increase when more rounds are added
– provided of course that the round keys are independent. Consequently, most of the
existing literature focuses on bounds for 4-round SPNs. At the core of these results
are upper bounds for functions of the form

FK(x) = S(L(S(x)) +K),

where L is a linear layer and S an S-box layer. For example, for the AES, this
corresponds to the transformation applied to one column of the state after two rounds.
In particular, the cell permutations and second key addition operation and linear
layer can be left out as these do not influence the maximum absolute correlation. In
this setting, one has

Var[CFK
b,a ] =

∑
u∈Fn

2

(CSb,uC
S
L> u,a)

2.

1It will be shown in Chapter 4 that variance bounds provide only limited restrictions on the
number of weak keys.
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Theorem 2.3 (Park et al. [87]). Let S = (S1, . . . , Sm) and let L be a linear map on
Fn2 with linear branch number BL (with respect to n/m-bit words). Then∑

u∈Fn
2

(CSb,uC
S
L> u,a)

2 ≤ max
{

max
1≤i≤n/m

∑
u∈Fm

2

(CSi
u,a)

2BL , max
1≤i≤n/m

∑
u∈Fm

2

(CSi
b,u)

2BL

}
≤ c2(BL−1),

where c = max1≤i≤m maxu,v∈Fn
2 \{0} |C

Si
u,v| is the maximum absolute correlation of any

linear approximation over any of the S-boxes S1, . . . , Sm.

Proof. For a proof of the first inequality, refer to Park et al. [87]; the proof of
Theorem 4.1 will build on some of the ideas from [87]. The second inequality follows
directly from the first, since∑

u∈Fm
2

(CSi
u,a)

2BL ≤ c2(BL−1)
∑
u∈Fm

2

(CSi
u,a)

2 = c2(BL−1).

An alternate proof of the second inequality can be found in [57].

For the AES, n = 32, m = 4 (one state column) and BL = 5. In this case,
Theorem 2.3 yields the bound 48 193 441·2−52. This result was improved to 31 231 767·
2−52 by Canteaut and Roué [32] at EUROCRYPT 2015. By means of an algorithmic
search, Keliher [66] established the tight upper bound 109 953 193 · 2−54.

In addition, one can show that for (more than) four rounds of the AES – and
other SPNs with a similar cell permutation – the variance can be upper bounded by
(109 953 193 · 2−54)4 ≈ 2−109.151. Of course, contrary to the two round bounds, this
result assumes independent round keys.

2.3.3 Decorrelation Theory

Decorrelation theory is a design strategy that aims to achieve provable information-
theoretical security. It was first proposed by Vaudenay [97,99–101]. Several block
ciphers have been based on this approach, perhaps most notably the Decorrelated
Fast Cipher (DFC), which was an AES candidate [49]. The design of a few other
block ciphers has also been based on decorrelation theory [35,97,98].

A block cipher EK : Fn2 → Fn2 is called perfectly dth order decorrelated if for any
distinct P1, . . . , Pd, the probability distribution of (EK(P1), . . . , EK(Pd)) is uniform
over the set of all d-tuples with distinct elements. More generally, the extend of dth
order decorrelation may be expressed using some distance measure between d-wise
distribution matrices. These are 2nd × 2nd matrices with coordinates

Pr[(EK(P1), . . . , EK(Pd)) = (C1, . . . , Cd)].

The construction of block ciphers with small d-wise decorrelation bias will not
be discussed in detail here. One construction uses a 3-round Feistel construction
instantiated with d-wise perfectly decorrelated functions such as polynomials of
degree d− 1 with secret coefficients. Such constructions tend to inflate the key size,
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but more recent results on Luby-Rackoff constructions such as [83] might allow for
more efficient constructions.

Decorrelation theory allows one to prove security against a wide range of statistical
attacks. Here, only linear cryptanalysis will be considered. In the following bound, a
linear distinguisher is a hypothesis test based on the estimated correlation, which is
computed from N randomly sampled (with replacement) plaintext/ciphertext pairs.
The advantage of a distinguisher is the absolute value of the difference between its
success probability and false positive rate.

Theorem 2.4 (Advantage of linear distinguishers [25]). Let EK be an n-bit block
cipher. For any linear distinguisher A using at most N known plaintexts,

AdvA ≤ 2

√
N ε+

N

2n − 1
+ 2

√
N

2n − 1
,

where ε is a measure of 2-decorrelation defined by

ε = max
P1,P2∈Fn

2

∑
C1,C2∈Fn

2

∣∣∣δP1 6=P2 δC1 6=C2

2n(2n − 1)
+
δP1=P2 δC1=C2

2n

− Pr
[
(EK(P1), EK(P2)) = (C1, C2)

]∣∣∣.
Proof. Since decorrelation theory does not play an important role in this thesis,
the proof will be omitted. The first term is due to the advantage of distinguishing
between an approximation with expected squared correlation ε+ 1/(2n − 1) and a
zero-correlation approximation. The second term can be interpreted as an upper
bound on the advantage of a zero-correlation distinguisher.

The bound in Theorem 2.4 is in fact quite weak. The reason is twofold. First,
one would hope to prove that a sufficiently decorrelated cipher is immune to linear
cryptanalysis, regardless of the available number of known plaintexts. Such a bound
can not be obtained using the proof strategy that was used for Theorem 2.4, due to the
transition to zero-correlation approximations. In addition, the bound does not exclude
low-advantage attacks such as those resulting from weak key classes. This has been
illustrated with examples, see for instance Knudsen and Rijmen [67]. Nevertheless, it
does appear to be possible to obtain stronger bounds than Theorem 2.4 by turning
to higher decorrelation orders. This approach is related to the moments method that
will be introduced in Section 4.2 to obtain correlation upper bounds in the weak key
setting.

In practice, decorrelation theory is rarely used. This is due to its significant
drawbacks: it usually requires an excessive key length, and the resulting bounds
on the advantage of various distinguishers are often weak. Some of these issues
might be resolved in future work, but for the moment decorrelation theory remains
impractical.
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2.4 Variants of Linear Cryptanalysis

Over the course of the last 25 years, many variants of linear cryptanalysis have
been developed. Most of these will be mentioned in this section, and a few will be
discussed in some detail.

Section 2.4.1 briefly discusses the use of multiple linear approximations. In-
variants [14, 71,94] are discussed in Section 2.4.2. Section 2.4.3 contains a concise
account of zero-correlation linear cryptanalysis. Less common generalizations of
linear cryptanalysis are discussed in Sections 2.4.4, 2.4.5 and 2.4.6. Section 2.4.4
discusses nonlinear approximations, which are of particular importance for Chapter 3.

Remark. As of yet, it may be unclear how some of the attacks in this section relate
to linear cryptanalysis. In addition, some generalizations of linear cryptanalysis are
merely hypothetical because the tools that might enable them have not yet been
discovered. Chapter 3 of this thesis will provide a uniform description of all the
attacks that are mentioned in this section. .

2.4.1 Multiple Approximations

One of the earliest generalizations of linear cryptanalysis is the use of more than one
linear approximation. The main challenges – in addition to the many open questions
in linear cryptanalysis – in this line of research are (1) applying techniques from
multivariate statistics to build efficient distinguishers (2) understanding the joint
behaviour of several linear approximations. Most of the literature is concerned with
the former. This thesis is more concerned with the latter. Hence, the description
below shall be brief.

Multiple linear cryptanalysis was introduced by Kaliski and Robshaw [61]. Further
analysis is provided by Biryukov et al. [23]. In this attack, one uses several independent
linear approximations. Usually, the sum of the squares of the estimated correlations
is used as the test or ranking statistic.

Hermelin et al. [54, 55] introduced multidimensional linear cryptanalysis. In their
attack, one uses a base set of linear approximations with linearly independent masks.
In the distinguisher, one estimates the correlations of all linear approximations with
masks in the span of the base set. Recently, Nyberg has introduced affine linear
cryptanalysis as an improvement of this approach [85].

At FSE 2019, Biham and Perle [20] proposed conditional linear cryptanalysis.
Contrary to multiple linear cryptanalysis, this attack explicitly takes into account
dependencies between linear approximations. This leads to the best known attacks on
the DES, thereby outperforming multiple and multidimensional linear cryptanalysis.

2.4.2 Invariants

Invariant subspace cryptanalysis was introduced by Leander et al. [71]. They showed
that for PRINTcipher, there exists an affine space a+V ( Fn2 such that EK(a+V ) =
a + V . That is, the set a + V is encrypted to itself. This is usually a weak key
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property, i.e. it only works for a subset of keys. Note that ∅ and Fn2 are trivially
invariant under any block cipher.

At ASIACRYPT 2016, Todo, Leander and Sasaki [94] introduced another type
of invariants. A Boolean function g : Fn2 → F2 is said to be a nonlinear invariant of
EK if there exists a key-dependent constant c ∈ F2 such that for all x ∈ Fn2

g(x) + g(EK(x)) = c.

Equivalently, the set {x ∈ Fn2 | g(x) = 0} is encrypted to itself or to its complement.
At ASIACRYPT 2018, the author of this thesis showed that the invariants of a

block cipher EK can be defined in terms of the eigenvectors of its correlation matrix
CEK [14]. This turns out to be useful to describe the invariants of some block ciphers.

Definition 2.4 (Block cipher invariant [14]). Let EK be a block cipher on Fn2 . A
vector v ∈ CFn2 is an invariant for EK iff it is an eigenvector of the correlation
matrix CEK .

If one defines correlation matrices by Definition 2.3, then the well-posedness of
Definition 2.4 is not surprising. Indeed, the eigenvectors of CEK are, up to a change
of basis, the eigenvectors of TF . If an eigenvector of the latter matrix is a probability
mass function, then it must be a stable distribution for F by the definition of a
transition matrix. In particular, an invariant set can be interpreted as the support
of a uniform probability distribution on that set.

If an eigenvector of TF does not happen to be a probability distribution, another
type of property is obtained. For example, one can subtract two uniform distributions
with complementary support. This gives rise to nonlinear invariants. Specifically, we
have the following equivalence [14].

Theorem 2.5 (Corollary 1 from [14]). Let F : Fn2 → Fn2 be a permutation with
correlation matrix CF . Let f : Fn2 → F2 be a Boolean function with correlation
matrix (δ0, v)

>. The vector v is an eigenvector of CF with eigenvalue (−1)c iff for
all x ∈ Fn2 ,

f(x) + f(EK(x)) = c.

Remark. In Theorem 2.5, f is necessarily a balanced Boolean function because the
first row of its correlation matrix is equal to δ0. The result generalizes (as does
Definition 2.4) to non-invertible functions F . In addition, CF could have eigenvalues
other than ±1. This yields new types of invariants. The general results in Chapter 3
will clarify this. .

2.4.3 Zero-correlation approximations

Zero-correlation linear cryptanalysis was introduced by Bogdanov and Rijmen [29].
The idea is to build a distinguisher based on one or more linear approximations with
correlation zero. As discussed in Section 2.2, this only works if the correlation of the
approximation is exactly zero.
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Zero-correlation approximations can be found using a miss-in-the-middle approach
based on the activity pattern of the masks. For the remainder of this thesis, it is not
necessary to go into more details; a generalization of this method will be discussed
in Chapter 3.

If only a single zero-correlation approximation is used, essentially half of the
codebook must be available to obtain a successful distinguisher. However, the data
cost can typically be reduced since in practice several zero-correlation approximations
are often available.

2.4.4 Nonlinear approximations

A natural extension of linear cryptanalysis is the use of nonlinear approximations.
Early attempts in this direction are the I/O sums of Harpes, Kramer and Massey [52]
and the work of Knudsen and Robshaw [69] from EUROCRYPT 1995 and 1996
respectively. Despite this work, nonlinear approximations have mostly remained
elusive. The author of this thesis believes this to be the consequence of several
difficulties:

– No sufficiently powerful framework for describing nonlinear approximations has
been developed. In particular, a clear approach to obtain accurate estimates of
the correlation of nonlinear trails is missing.

– It is unclear which nonlinear approximations can be of practical use. A related
issue is that there is no reason to expect that, e.g., the correlation of a quadratic
approximation might be accurately estimated by means of a limited number of
“quadratic trails”.

– Successfully using nonlinear approximations requires embracing the weak key or
fixed key setting. Any sufficiently general approach to nonlinear cryptanalysis
must make key-dependence explicit.

The recently introduced nonlinear invariant attack (discussed in Section 2.4.2) is a
special case of nonlinear cryptanalysis, but has led to more significant cryptanalytic
results [14,94].

Inspired by these advances, recent work by Beierle et al. [9] reconsiders the use
of nonlinear approximations. Their approach is to perform linear cryptanalysis on
a transformed representation of the block cipher. This allows them to accurately
describe the correlation of several approximations, but in some cases (Section 4.4 of
their paper) the approach yields inaccurate estimates. They formulate a number of
open problems related to this. One problem when working with transformations of a
block cipher, is that it remains unclear how the transformation should be chosen.

Chapter 3 takes a different approach as part of a broader generalization of linear
cryptanalysis. The open problems posed by Beierle et al. [9] will be resolved in
Section 3.4.
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2.4.5 Other groups

Granboulan et al. [50] and Baignères et al. [5] consider linear cryptanalysis over Fp
with p 6= 2 a prime. More generally, one can consider block ciphers defined on
arbitrary finite abelian groups. The theory in Chapter 3 will be developed in this
general setting. Some additional aspects that occur even in the linear case but that
were not addressed in earlier work [5] will be discussed.

2.4.6 Statistical cryptanalysis

Statistical cryptanalysis is often used as a collective term for all forms of cryptanalysis
that rely, in one way or another, on statistics. This includes both linear and differential
cryptanalysis.

The title of this section, however, specifically refers to Vaudenay’s work on this
subject [96]. In essence, his approach is to model the propagation of cryptanalytic
properties by a Markov chain – this can be related to Chapter 3 of this thesis, despite
fundamental differences. It can be argued that this particular approach to statistical
cryptanalysis suffers from the same problems as nonlinear cryptanalysis (which is
a special case, of course), cf. Section 2.4.4. Followup work [4,58,59] has primarily
concentrated on aspects such as optimal hypothesis testing and key ranking, rather
than on identifying and analyzing the properties themselves.
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Chapter 3

A Geometric Approach to
Linear Cryptanalysis

This chapter develops a broad generalization of linear cryptanalysis. Among other
things, this includes the use of probabilistic nonlinear relations between the input
and output bits of a block cipher. As the title suggests, the proposed generalization
is based on an approach to linear cryptanalysis that is in some sense geometric. The
starting point is that many cryptanalytic properties can be related to subspaces of
an inner product space in which geometric concepts such as angles are well-defined.
The reader is advised to keep this in mind.

It will be assumed that the function under analysis operates on a finite set
X, which in practice is often a vector space over F2. Throughout this chapter,
F : X → X denotes any function, such as a cryptographic permutation or a block
cipher. More generally, one could consider probabilistic transitions – most of the
theory below can be extended to this case, but this is left as future work.

This chapter is organized as follows. Section 3.1 discusses a brief introductory
example. Some essential preliminaries are introduced in Section 3.2. The core of
the geometric framework is developed in Section 3.3 and is subsequently used in
Section 3.4 to resolve an open problem posed by Beierle et al. [9] at FSE 2019. Finally,
Section 3.5 explores which types of approximations are most promising for future
work and discusses how to find them using optimization techniques. Several examples
are provided.

3.1 Introduction

In “classical” frequency analysis, one samples from a probability distribution at
the input of F (typically, a cipher) and observes the probability distribution at the
output. Let p : X → [0, 1] denote the probability mass function at the input. The
output probability mass function q is then given by q(y) =

∑
x∈F−1(y) p(x). This can

also be expressed as
q = TF p, (3.1)
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where TF is a |X| × |X| matrix with Ty,x = δy,F (x). If F is a bijection, then TF is a
permutation matrix. Note that, throughout this thesis, vector notation will be used
for probability mass function such as p and q. This makes sense because the set RX
of functions X → R is an algebra1 over R.

The relation (3.1) can be used to compute q from p only in simple cases (for
instance, when the block size n is small). In general, it is necessary to approxi-
mate (3.1) – this is the main subject of the present chapter. In addition, more general
properties than probability mass functions will be considered. Specifically, all of the
variants of linear cryptanalysis that were mentioned in Section 2.4 are covered by
the result in this chapter.

3.2 Preliminaries

This section recalls a few results that will be used throughout this chapter. For a
finite set X, let CX denote the vector space of functions from X to the field C of
complex numbers. Note that CX ∼= C|X|. In particular, this is an inner product
space with the inner product

〈f, g〉 = f∗g =
∑
x∈X

f(x)g(x),

where f∗ denotes the conjugate transpose of f and f(x) is the complex conjugate of
f(x). It will be shown in Section 3.3 that linear cryptanalysis and its generalizations
are all concerned with the propagation of low-dimensional subspaces of CX through
a function. For this purpose, it will be useful to have a notion of similarity between
two vector spaces V,U ⊆ CX.

In the one-dimensional case, the natural definition is (the absolute value of) the
inner product. In higher dimensions, one would like to extend this by computing
inner products between several basis vectors. Definition 3.1 follows this idea, but
avoids the problem of dependence on the basis.

Definition 3.1 (Principal correlations). Let V,U ⊆ CX be vector spaces and let
V and U be matrices with columns that form an orthogonal basis for V and U
respectively. The principal correlations between V and U are defined in the following
equivalent ways:

1. The cosines of the principal angles between V and U .

2. The singular values σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0 of the matrix V ∗U with d =
min{dimV,dimU}.

3. The largest d singular values σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0 of PVPU with PV the
orthogonal projector on V.

1Technically, only functions X → R>0 are considered in this section. The set of such functions
is a cone rather than a vector space.
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Note that Definition 3.1 is well-posed, because the singular values do not depend on
the choice of basis. In the one-dimensional case with V = Span{f} and U = Span{g},
there is only one principal correlation:

σ1 =
|〈f, g〉|
‖f‖2‖g‖2

.

In Section 3.3, further interpretations of the principal correlations will be given.
In the remainder of this section, we recall some notions related to harmonic

analysis on finite abelian groups. This material can also be found in the lecture notes
of Diaconis [47], or the books by Ceccherini-Silberstein et al. [34] and Luong [74]. For
a general discussion of the representation theory of finite groups, see Serre [92]. In
the following, abelian groups are written additively unless otherwise stated.

Definition 3.2 (Group characters [74, 92]). Let G be a finite abelian group. By
definition, a (complex) character of G is a group homomorphism G → C×. The
(Pontryagin) dual of G is the group Ĝ of all characters of G with respect to the
pointwise product.

It is easy to see that the characters indeed form a group under pointwise multipli-
cation. Note that, more generally, characters can be defined for any group. However,
extending the results below to the nonabelian case is more complicated (in this case,
G has irreducible representations of degree at least two). The dual group has the
following properties.

Theorem 3.1 ( [47,74,92]). Let G be a finite abelian group with dual Ĝ, then

(1) Ĝ ∼= G. In particular, Ĝ is finite abelian.

(2) ̂̂
G ∼= G, canonically through the evaluation map.

(3) If H is a finite abelian group, then Ĝ⊕H = Ĝ× Ĥ with × the direct product.

(4) For the additive group of a finite field Fq ⊇ Fp with p a prime, F̂q = ({x 7→
ζTr(ux) | u ∈ Fq}, ·) with ζ = e2πi/p and where the trace is taken with respect to
the base field Fp.

(5) The characters of G are orthogonal in the sense that

〈χ, ψ〉 =
∑
x∈G

χ(x)ψ(x) = |G|δχ,ψ.

The main reason for introducing group characters is the definition of the Fourier
transform, which is given below.

Definition 3.3 (Fourier transformation [47,74]). Let f : G→ C, then the function
f̂ : Ĝ→ C with

f̂(χ) =
∑
x∈G

f(x)χ(x),
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is called the Fourier transform of f . The Fourier transformation is the invertible
operator F : CG → CĜ defined by Ff = f̂ . In fact, one can check that F is an
isomorphism of vector spaces.

Note that Definition 3.3 defines f̂ as a function on Ĝ, but we can think of this as
a function on G after choosing an isomorphism between G and Ĝ. In general, there
is no unique choice for the isomorphism.

In practice, one often wants to obtain f from f̂ – this is indeed possible because
Definition 3.3 defines an invertible transformation. Theorem 3.2 gives an expression
for the inverse. This result follows directly from the orthogonality of group characters.

Theorem 3.2 (Inverse Fourier transformation [47]). Let f : G → C with Fourier
transformation f̂ : Ĝ→ C, then:

f(x) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(x),

Theorem 3.2 implies that the Fourier transformation F is – up to a factor |G| –
a unitary transformation: F−1 = |G|−1F ∗. It follows that 〈Ff,Fg〉 = |G|〈f, g〉.

As will be shown in Section 3.3, the Fourier transformation is not absolutely
necessary to theoretically describe linear cryptanalysis and its generalizations. Nev-
ertheless, it essential from a practical point of view. This is mostly a consequence of
the following property.

Theorem 3.3 (Convolution property [47,74]). Define the convolution f ∗ g ∈ CG
of two functions f, g ∈ CG by

(f ∗ g)(x) =
∑
y∈G

f(x− y)g(y),

then the Fourier transformation of f ∗ g satisfies

f̂ ∗ g (χ) = f̂(χ) ĝ(χ).

Equivalently, the Fourier transform F : (CG, ∗)→ (CĜ, ·) is an algebra isomorphism.
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3.3 General Theory

Recall from Section 3.1 that one can describe the propagation of a probability mass
function p : X → [0, 1] through a function F by a matrix-vector product TF p. In
this section, we will consider the propagation of arbitrary subspaces V ⊆ CX. It will
be shown that this is necessary to describe linear cryptanalysis and its variants in
full generality.

Remark. Instead of thinking about the probability mass function p, one could consider
the induced probability measure µ(S) =

∑
x∈S p(x) on {S | S ⊆ X}. More generally,

for any f ∈ CX, there is an associated complex-valued measure. This point of view
sometimes enhances intuition. .

Transition matrices and correlation matrices are introduced in Section 3.3.1.
When F is a “complicated” function, and n is large, it is often impractical to work
directly with the transformed vector spaces TFV. Hence, an approximate approach
is necessary. This is discussed in Section 3.3.2.

Section 3.3.3 relates functions f : X → Y to subspaces V ⊆ CX. This provides
the link with the “classical” point of view, where one considers functions (typically
Boolean) on the state. The relation with the principal correlations is also discussed.

Usually, F can be decomposed into a sequence of “simple” steps as F = Fr◦Fr−1◦
· · ·◦F1. In this case, one would like to combine (“pile-up”) successive approximations.
This is possible by means of a generalization of the piling-up lemma, which is derived
in Section 3.3.4.

Section 3.3.5 briefly discusses the role of invariants and (generalized) zero-
correlation approximations. Finally, Section 3.3.6 addresses the effect of sampling:
in practice, one compares a model (i.e. theoretical approximation) of F with the
behaviour of F on a relatively small sample of X.

3.3.1 Transition Matrices

Let X and Y be finite sets and F : X → Y a map between them. Given a function
f ∈ CX, we can ask what the corresponding g ∈ CY is such that g satisfies the
requirement

g(y) =
∑

x∈F−1(y)

f(x).

The main motivation behind this definition comes from the case where f and g are
probability distributions. If f is a probability distribution and x ∼ f , then F (x) ∼ g.

Remark. The construction above is called a pushforward. Specifically, consider
the complex-valued measure µf (S) =

∑
x∈S f(x) defined by f . Then the measure

µg(S) =
∑

x∈S g(x) = µf (F
−1(S)) is precisely the pushforward measure of µf with

respect to F . .
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This correspondence defines a linear map TF : CX → CY . Furthermore, in the
δ-function basis, this map is represented by the matrix

TFy,x = δy,F (x).

Recall from Section 2.1, that the matrix TF is called the transition matrix of F (cf.
Definition 2.2). It coincides with the notion of a transition matrix in a Markov chain
with deterministic transitions. In fact, the theory presented in this chapter can be
generalized to arbitrary transition matrices. However, it is unclear if this would have
any applications – indeed, it must be reiterated that the key is not to be treated as
a random variable when F represents a block cipher.

For the remainder of this section, suppose that X = G and Y = H with G and
H finite abelian groups. In this case, it is often convenient (for practical reasons) to
work in the basis of group characters rather than in the basis of δ-functions. This
leads to the following definition, which generalizes the notion of a correlation matrix
as introduced in Definition 2.3.

Definition 3.4 (Correlation matrix). Let F : G→ H be a function with G and H
finite abelian groups. The correlation matrix CF of the function F is the representation
of the linear map TF with respect to the character bases of CG and CH, i.e. the
Fourier transformation of the matrix TF . Specifically,

CFχ,ψ =
1

|G|
∑
x∈G

χ(F (x))ψ(x).

Note that we can think of the linear transformation represented by CF either as a
map CĜ→ CĤ, or (after choosing isomorphisms of G and H with their duals) as
CG→ CH.

Note that Definition 3.4 is essentially the same as Definition 2.3 from Section 2.1
for the case G = Fn2 and H = Fm2 , which is the definition I used in [14]. In that case,
the original definition by Daemen et al. [40] coincides with the expression for the
coordinates CFχ,ψ.

The use of group characters to describe linear cryptanalysis on finite abelian groups
other than Fn2 is not new, see the work of Granboulan et al. [50] and Baignères et al. [5].
However, they do not use correlation matrices. Moreover, the reader who is familiar
with these works will note that the results in Section 3.3.3 imply that their approach
is somewhat incomplete.

The following theorems state a few basic properties of transition matrices. Special
cases of some of these also appear in Theorem 2.1.

Theorem 3.4 (Properties of transition matrices.). We have

1. For F : X → Y and F ′ : Y → Z, TF ′◦F = TF
′
TF .

2. If F = (F1, . . . , Fn) :
∏k
i=1Xi →

∏l
i=1 Yi with Fi : Xi → Yi, then TF =⊗n

i=1 T
Fi.
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3. If F : X → Y is a bijection, TF is a permutation matrix.

The first two results in Theorem 3.4 also apply to correlation matrices. The only
necessary change is notational. Theorem 3.5 states a few additional properties which
are specific to correlation matrices. No proofs are given, but in most cases the proof
from Theorem 2.1 or [40] can be generalized in a straightforward manner.

Theorem 3.5 (Properties of correlation matrices.). Let G and H be finite abelian
groups and F : G→ H a function. Then

1. If F is a bijection, then CF is a unitary matrix.

2. If F is a group homomorphism, then CFχ,ψ = δχ◦F,ψ. Furthermore, if F is an
isomorphism, then CF is a permutation matrix.

3. If F (x) = x+ c for some constant c, then CF is diagonal with CFχ,χ = χ(c).

3.3.2 Vector Space Approximations

Given a vector space V, the pushforward TF V will in general not be “nice” enough
to be useful. Specifically:

– Suppose that F is a (cryptographic) permutation. If V corresponds (per
Section 3.3.3) to some function f : X → Y , then TF V will correspond to f ◦F .
If F is a good permutation, the function f ◦ F is of no use in the analysis of
the mode in which F is used.

– When F is a block cipher, TF V will strongly depend on the key. This implies
that f ◦ F can usually not even be evaluated by the attacker.

Hence, there is a need to approximate TF V with another vector space U . This leads
to the following definition.

Definition 3.5 ((Vector space) approximation). An approximation of a function F
is a pair of subspaces V,U ⊆ CX. The approximation map associated to (U ,V) is
defined by

T F
U ,V = PU T

F PV .

The principal correlations of (U ,V) are the min{dimU ,dimV} largest singular values
of T F

U ,V . If F is a bijection, then these singular values correspond to the principal
correlations (as introduced in Definition 3.1) between the vector spaces U and TF V.

If U is a basis for U and V is a basis for V, then

T F
U ,V = U(U∗U)−1 [U∗TFV ] (V ∗V )−1V ∗.

Hence, T F
U ,V is completely determined by U∗TFV . In practice, computing the matrix

U∗TFV is nontrivial – Section 3.3.4 generalizes the piling-up lemma for this purpose.
Definition 3.5 is quite broad: it includes linear, multiple linear, nonlinear, invariant

subspaces, nonlinear invariants and many other types of approximations. An overview
of special cases can be found in Section 3.6. Two basic examples are given below.
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Example. Let A,B ⊆ X. If f(x) = 1A(x)/|A|1/2 and g(x) = 1B(x)/|B|1/2, then

〈g, TF f〉 = 〈(TF )>g, f〉 = |F (A) ∩B|
|F (A)|1/2 |B|1/2

.

This value is equal to the first (and only) principal correlation of the approximation.
More generally, if f and g are probability distributions, 〈f, g〉 is the expected likelihood
Ef(x) with x a random variable with probability distribution g. .

Example. Suppose X = Fn2 and let u, v ∈ Fn2 be “masks”. If f(x) = (−1)u>x/2n/2

and g(x) = (−1)v>x/2n/2, then

〈g, TF f〉 = 〈(TF )>g, f〉 = 2Pr [u>x = v>F (x)]− 1

with x uniformly distributed over X. Section 3.3.3 will explain the choice of f and
g. .

To stress the difference with special cases such as linear approximations, the
approximations from Definition 3.5 will occasionally be called “vector space approx-
imations”. A plausible alternative term for “approximation” would be “hull”, in
reference to the notion of a linear hull. This terminology will be avoided since there
is no complete consensus on its definition in the case of linear cryptanalysis [82,84].

Remark. If F is a keyed function, then the vector spaces V and U will in general
depend on the key. In this thesis, the fixed-key setting is considered.2 In practice,
this means that the model of the cipher will be a function of the key. This is not a
limitation (on the contrary, it is an advantage) when one is interested in evaluating
the model. However, this does complicate the selection of the final model. Section 3.5
contains a brief summary of the issues. .

An important advantage of Definition 3.5 is that it is essentially basis-free. One
can reasonably argue that any measure of the quality of an approximation should be
independent of the choice of basis as well. The principal correlations provide one such
measure, but they are not the only option. Section 3.3.4 focuses on approximating
the entire map T F

U ,V rather than only its singular values.
Two approximation measures that are related to the principal correlations are

worth mentioning. The first measure is the first principal correlation σ1. It satisfies

σ1 = ‖T F
U ,V‖2 = max

f∈V
g∈U

|〈g, TF f〉|
‖f‖2 ‖g‖2

.

That is, σ1 measures the quality of the optimal one-dimensional approximation in the
vector space approximation. In multiple linear cryptanalysis, it is quite common to
use the sum of the squares of the correlations of several approximations (“capacity”).
This can be motivated from a statistical point of view. Baignères, Junod and

2The difference between the fixed-key and random-key setting may seem obvious, but lack of
clearness has (continues to?) lead to substantial confusion. See for example Murphy [82].
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Vaudenay [4] show that, under suitable conditions, this quantity determines the cost
(data, success probability, …) of an optimal distinguisher. The capacity is closely
related to

d∑
i=1

σ2i = ‖T F
U ,V‖2F , (3.2)

with d = min{dimV,dimU}. Note that (3.2) is not quite the same as the notion of
“capacity” in multiple linear cryptanalysis because (3.2) possibly contains additional
terms. Section 3.3.3 should clarify this.

3.3.3 Relation with Nonlinear Functions

In Section 3.3.2, vector space approximations were defined. However, it is not yet
clear how subspaces of CX relate to, for example, linear approximations in the
classical sense. The only concrete example that has been mentioned so far is that of
probability distributions.

Given a function f : X → Y (typically, |Y | � |X|), we define an associated
subspace V ⊆ CX as follows:

V = {g ◦ f | g ∈ CY }.

That is, V is the subspace of functions that extend a function in CY to a function
on CX by composing it with f .

Remark. Baignères, Junod and Vaudenay call functions such as f “projections” [4].
This goes back to Vaudenay’s “statistical cryptanalysis” which indeed considers
probability distributions on the smaller space Y . However, Baignères et al. do not
“pull back” these distributions to X – unlike in the construction of V above. This
leads to difficulties when they attempt to generalize the piling-up lemma. .

The vector space V is closely related to the transition matrix T f of f . Indeed,
the set of functions {δy ◦ f}y∈Y is an orthogonal basis for V. Hence, we have

V = Span{δy ◦ f | y ∈ Y } = Row T f .

That is, the rows of T f form an orthogonal basis for V.
We now consider why it makes sense to say that functions f, g : X → Y correspond

to approximations (in the sense of Definition 3.5) of F : X → X. Let V and U be
the vector spaces associated with f and g respectively. Define

Ny,x = |{z ∈ X | f(z) = x ∧ g(F (z)) = y}|.

Since the rows of T f form an orthogonal basis for V and likewise for T g and U , we
have T F

U ,V = (T g)>[T gTF (T f )>]T f with

T gTF (T f )> =
[∑
z∈X

δy(g(F (z)))δx(f(z))
]
y,x

=
[
Ny,x

]
y,x
.
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In particular, the principal correlations between U and TFV are the singular values
of this matrix. There are also other quantities that could be of interest, for example

Tr (T gTF (T f )>) = |{x ∈ X | f(x) = g(F (x))}|.

Example. Assume that F is a bijection. For Y = F2 and assuming f and g are
balanced, we have

T gTF (T f )> =

(
N0,0 N0,1

N1,0 N1,1

)
= |X|

(
1 1
1 −1

)(
1 0
0 c

)(
1 1
1 −1

)
,

with c = 2(N0,0 +N1,1)/|X| − 1. Hence, the singular values are σ1 = 1 and σ2 = |c|.
This example shows that if the character basis is used, then balanced nonlinear
approximations can essentially be described using one-dimensional vector spaces. For
|Y | > 2, this is no longer true. .

For the remainder of this section, assume Y = H is a finite abelian group.
In the above example, the characters of Ĥ were composed with f to obtain an
orthogonal basis for V (and similarly for U). Indeed, this is possible because
V = Span{χ ◦ f | χ ∈ Ĥ}. For F bijective, the trivial character is an eigenvector
of TF so (because |H| = 2) this basis diagonalizes T gTF (T f )>. When |H| > 2, the
trivial character is still an eigenvector of TF , but the other characters are not (in
general).

Remark. In the above discussion, we have not assumed that X is an abelian group,
nor have we taken Fourier transformations of functions in CX. That is, only the
choice of basis for V has been discussed. When X = G with G a finite abelian group,
we can additionally take the Fourier transformation of these basis functions. We then
consider the vector space V̂ = FV ⊆ CĜ. After choosing an isomorphism between
G and Ĝ, we can think of this additional Fourier transformation as a change of basis
in the ambient space CG of V. .

It is worthwhile to consider a few special classes of functions f : G→ H. If f is a
homomorphism, then χ ◦ f with χ ∈ Ĥ is a homomorphism too. That is, χ ◦ f ∈ Ĝ.
Hence, in this case V is the span of a subgroup of Ĝ.

Example. If f : Fn2 → F2 is a homomorphism, then the corresponding vector space V is
given by Span{1, ψ} where 1 denotes the trivial character x 7→ 1 and ψ = (−1)f ∈ F̂n2 .
Note that such a homomorphism f is necessarily of the form f(x) = u>x. .

If X =
∏m
i=1Xi (in some natural way), then it is useful to consider the corre-

spondence CX ∼= ⊗mi=1CXi. One can then define the tensor rank of elements of
V ⊆ CX. In particular, vector spaces V which have a basis consisting entirely of
rank-one tensors form an interesting class of approximations which will be discussed
in Section 3.5.

If f(x1, . . . , xm) =
∑m

i=1 fi(xi), then (χ ◦ f)(x) =
∏m
i=1(χ ◦ fi)(xi). That is, the

vector space V has a basis {⊗mi=1(χ ◦ fi) | χ ∈ Ĥ}. Such vector spaces will be
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discussed in Section 3.5.2. Note that this is related to a property of correlation
matrices: if F (x1, x2) = F1(x1) + F2(x2), then the rows of CF satisfy

CF·,χ⊗ψ = CF1
·,χ ⊗ C

F2
·,ψ.

The above equality is sometimes also used in the description of the correlation matrix
of the primitive F , in particular when F is a Feistel cipher.

3.3.4 Piling Up Approximations

Suppose that F can be written as the composition of a sequence of simple functions:
F = Fr ◦ Fr−1 ◦ · · · ◦ F1. Note that we have TF =

∏r
i=1 T

Fr−i+1 . In general, it is too
difficult to approximate F directly. Instead, one approximates each of the functions
Fi separately, and then combines these approximations. Extending the terminology
that is used in linear cryptanalysis, such a sequence of successive approximations
will be called a trail. Formally, we have the following definition.

Definition 3.6 ((Vector space) trail). A trail of vector spaces for a function F =
Fr ◦ Fr−1 ◦ · · · ◦ F1 is a tuple of subspaces V0,V1, . . . ,Vr ⊆ CX. The approximation
map of the trail (V0,V1, . . . ,Vr) is defined as

r∏
i=1

T
Fr−i+1

Vr−i+1,Vr−i
=

r∏
i=1

PVr−i+1 T
Fr−i+1 PVr−i ,

and its nonzero singular values are called principal correlations in accordance with
Definition 3.5. If the vector spaces Vi are one-dimensional and spanned by vectors fi
for i = 0, . . . , r, then we shall also say that f0, f1, . . . , fr form a trail.

In some cases, the correlation of an approximation is approximately equal to the
correlation of a trail. In linear cryptanalysis, this result is known as the piling-up
lemma. Theorem 3.6 generalizes the piling-up lemma. In addition, it quantifies the
error that is made in this approximation.

Before considering the general setting of vector space approximations, the one-
dimensional case will be discussed. In this case, we obtain Corollary 3.1.

Corollary 3.1 (One-dimensional piling-up principle.). Let f0, f1, . . . , fr ∈ CX be
r + 1 unit vectors which form a trail for a function F = Fr ◦ Fr−1 ◦ · · · ◦ F1. Then
there exist vectors f⊥i , i = 1, . . . r such that 〈fi, f⊥i 〉 = 0 and

〈fr, TF f0〉 =
r∏
i=1

〈fi, TFifi−1〉+
r∑
i=1

〈fr, (
∏r−i
j=1 T

Fr−j+1)f⊥i 〉〈f⊥i , TFifi−1〉
∏i−1
j=1〈fj , TFjfj−1〉.
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Proof. The result follows from Theorem 3.6, which is stated below. Take Vi =
Span{fi}, then PVi = fi f

∗
i . Then Theorem 3.6 yields

〈fr, TF f0〉frf∗0

= frf
∗
0

r∏
i=1

〈fi, TF fi−1〉+ fr

r∑
i=1

〈fr, (
∏r−i
j=1 T

Fr−j+1)f⊥i 〉(f⊥i )∗
∏i
j=1 T

Fi−j+1fi−j f
∗
i−j

= frf
∗
0

r∏
i=1

〈fi, TF fi−1〉+ frf
∗
0

r∑
i=1

〈fr, (
∏r−i
j=1 T

Fr−j+1)f⊥i 〉〈f⊥i , TFifi−1〉
∏i−1
j=1〈fj , TFjfj−1〉,

which implies the result.

Corollary 3.1 essentially states that the correlation – there is only one – of a
one-dimensional approximation is equal to the product of the correlations of the
intermediate approximations of a trail plus an error term. By choosing the optimal
trail, one hopes to minimize the error term (but this is not guaranteed to succeed).

Now consider the general case of vector space approximations with arbitrary
dimension. Figure 3.1 illustrates the geometric interpretation of the piling-up
principle. The vector space V0 is transformed to TF1V0, which is then approximated
by V1. One subsequently approximates TF2V1 by another vector space V3. As will
be discussed below, each of these approximation steps corresponds to an orthogonal
projection.

V0

TF1

TF1V0
V1 TF2 TF2V1

V2

Figure 3.1: Schematic illustration of the piling-up principle.

Using Definitions 3.5 and 3.6, the general piling-up principle can be expressed
as follows: the approximation matrix of a vector space approximation in the sense
of Definition 3.5 can (sometimes) be approximated by the approximation matrix
of a vector space trail. This is made formal, including the error term, in the next
theorem. Note that Corollary 3.1 is a special case.

Theorem 3.6 (The general piling-up principle.). Let V0,V1, . . . ,Vr be a vector space
trail for a function F = Fr ◦ Fr−1 ◦ · · · ◦ F1. Then

T F
Vr,V0

=

r∏
i=1

T
Fr−i+1

Vr−i+1,Vr−i
+

r∑
i=1

T
Fr◦···◦Fi+1

Vr,V⊥
i

TFi (
∏i−1
j=1 T

TFi−j

Vi−j ,Vi−j−1
).
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Proof. The proof considers the following sequence of projections:

PV0 −→ PV1T
F1PV0 −→ PV2T

F2PV1T
F1PV0 −→ · · ·

+ +
PV⊥

1
TF1PV0 PV⊥

2
TF2PV1T

F1PV0

+
TF2PV⊥

1
TF1PV0

More formally, the result follows by showing (using induction on m) that for all
1 ≤ m ≤ r,

TFm◦···◦F1PV0 =
m∏
i=1

PVm−i+1T
Fm−i+1PVm−i+

m∑
i=1

(
∏m−i
j=1 T

Fm−j+1)PV⊥
i
(
∏i
j=1 T

Fi−j+1PVi−j ).

For m = 1, we have TF1PV0 = PV1T
F1PV0 + PV⊥

1
TF1PV0 . For m+ 1, the induction

hypothesis then implies that

TFm+1◦···◦F1PV0

= TFm+1

m∏
i=1

PVm−i+1T
Fm−i+1PVm−i +

m∑
i=1

(
∏m+1−i
j=1 TFm+1−j+1)PV⊥

i
(
∏i
j=1 T

Fi−j+1PVi−j )

= (PVm+1 + PV⊥
m+1

)
m+1∏
i=1

TFm+1−i+1PVm+1−i +
m∑
i=1

(
∏m+1−i
j=1 TFm+1−j+1)PV⊥

i
(
∏i
j=1 T

Fi−j+1PVi−j )

= PVm+1

m+1∏
i=1

TFm+1−i+1PVm+1−i +
m+1∑
i=1

(
∏m+1−i
j=1 TFm+1−j+1)PV⊥

i
(
∏i
j=1 T

Fi−j+1PVi−j ).

This establishes the result.

Note that the error term corresponds to the approximation matrix of a trail
V0, . . . ,Vi−1,V⊥i ,Vr for the function G◦Fi◦Fi−1◦· · ·◦F1 with G = Fr◦Fr−1◦· · ·◦Fi+1.
For practical purposes, it is useful to restate Theorem 3.6 in the form of Corollary 3.2.

Corollary 3.2 (The general piling-up approximation.). Let V0,V1, . . . ,Vr be a vector
space trail for a function F = Fr◦Fr−1◦· · ·◦F1 and let V0, V1, . . . , Vr be matrices whose
columns are a basis for V0,V1, · · · ,Vr respectively. Suppose that for all i = 1, . . . , r,

‖T Fr◦···◦Fi+1

Vr,V⊥
i

TFi (
∏i−1
j=1 T

TFi−j

Vi−j ,Vi−j−1
)‖2 ≤ ε

Then there exists a matrix E with ‖E‖2 ≤ rε such that

V ∗
r T

F V0 = (V ∗
r Vr)

r∏
i=1

(V ∗
r−i+1Vr−i+1)

−1(V ∗
r−i+1 T

Fr−i+1Vr−i) + V ∗
r E V0.

In particular, if the matrices Vi have orthogonal columns, then (with ‖E′‖2 ≤ ε)

V ∗
r T

F V0 =

r∏
i=1

V ∗
r−i+1 T

Fr−i+1Vr−i + E′.
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Remark. Theorem 3.6 and Corollary 3.2 above are formulated in terms of the
transition matrices TF . Of course, they have an equivalent formulation in terms of
the correlation matrices CF . The only difference is notational. .

In practice, the choice of the vector spaces Vi that constitute a trail is limited in
several ways. Clearly, dimVi should not be too large. In addition, Vi must have a
basis matrix Vi such that V ∗

i T
FiVi−1 can be computed efficiently.

For convenience, denote the set of vector spaces which are acceptable for the
attacker by T . The set of acceptable trails is then T r+1. For instance, in linear
cryptanalysis this set contains (r + 1)-tuples of vector spaces spanned by a small
number of characters of the group Fn2 .

It is possible that ‖E‖2 is large because there are a few other trails in T r+1 which
are a better (or comparable) approximations than V0,V1 . . . ,Vr. This is not a major
problem, since one can easily combine these approximations to decrease the error
term. As long as the dimension of the trails in T does not need to be increased too
much, no practical problems occur.

An alternative possibility is that ‖E‖2 is large (in a relative sense) due to the
lack of any good trails in T r+1. There are then two possibilities:

– The vector space approximation V0,Vr is bad, i.e. has small principal correla-
tions. In this case, ‖E‖2 is still small in absolute terms. This is the goal of the
designer.

– The approximation V0,Vr is good, but all trails in T r+1 have a large error term
E. This phenomenon can be called “clustering with respect to T ”.

Note that clustering is remarkable precisely because V0,Vr ∈ T : a “simple” (in
the sense of T ) approximation of F can not be understood in terms of simple
approximations of the intermediate steps Fi. Clustering can be a major problem,
because it prevents obtaining an accurate estimate of T F

Vr,V0
using trails in T r+1.

In practice, this means that the block cipher may be insecure but this can only be
detected by using a different set T ′ of acceptable vector spaces.

In general, estimating the error E (or even ‖E‖2) for a given trail appears to be
difficult for any real-world block cipher. This is so by definition: the error E is what
remains after constructing the best possible approximation that is within one’s reach.
If we decide to use the piling-up approach at all, showing that E is small amounts to
showing that there is no trail clustering. If one can show this, then by additionally
demonstrating that there are no good trails3, the designer is able to claim (without
further assumptions) that there are no good approximations with V0,Vr ∈ T . This
problem seems to be completely open.

However, for constructions that involve a parameter such as a key, bounding E
may not be entirely out of reach. One can then attempt to obtain results that are
true for most keys. This also applies to permutations that involve constants which
are chosen at random during the design phase – but this requires a leap of fate (in

3This should not be too hard, since by definition T consists of approximations that can be
handled.
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the designer). A first step in this direction is to show that E (or, similarly, T F
Vr,V0

)
has small variance. As discussed in Section 2.3.2, this has been done (for the AES)
in the context of linear cryptanalysis. However, as illustrated by Midori-64 [14],
bounds on the variance of a distribution are not sufficient to prove security against
linear cryptanalysis. The natural next step is then to obtain stronger tail bounds
on E. This is the subject of Chapter 4, which investigates upper bounds on the tail
probability of linear approximations.

3.3.5 Zero-Correlation Cryptanalysis and Invariants

Not all of the types of approximations covered by Definition 3.5 can be constructed
using the piling-up approach. As discussed in Section 2.4.3, zero-correlation linear
cryptanalysis [29] exploits linear approximations with correlation zero. This can be
generalized to arbitrary approximations in the sense of Definition 3.5.

Definition 3.7 (Zero-correlation approximation). An approximation (U ,V) of a
function F is called a zero-correlation approximation if all its principal correlations
are zero. Equivalently, U ⊥ TFV.

For standard zero-correlation approximations, U and V correspond to linear
approximations and such properties are usually found using a miss-in-the-middle
approach based on the activity pattern of the approximation masks. The miss-in-
the-middle method can be generalized as follows. Consider (V1,U1) with U1 ⊇ TF1V1
and (V2,U2) with U2 ⊇ TF

−1
2 V2 for invertible F2. If U1 ⊥ U2, then V2 ⊥ TF2◦F1V1.

Exploring various types of generalized (in the sense of Definition 3.7) zero-
correlation approximations is left as future work. One example of such a property
will be encountered in Section 3.4.

Invariants are another special type of approximations. Such properties were
already discussed in Section 2.4.2, albeit in a less general context. The following
definition provides a further extension to Definition 2.4.

Definition 3.8 (Invariant). Let F : X → X be a function. An approximation (V,V)
such that TFV ⊆ V will be called an invariant for F .

Definition 3.8 essentially states that the invariants of F correspond precisely to
the invariant subspaces of TF . It should be noted that, since TF is diagonalizable,
such a V is necessarily spanned by one or more eigenvectors of TF . This leads to a
formulation which is only slightly more general than Definition 2.4.

In all existing examples of nontrivial invariants, such as those discussed in
Section 2.4.2, one has dimV = 1. As in the following example, those can be
combined to form invariant subspaces of a larger dimension. In fact, as shown below,
this observation can sometimes reveal additional weak keys.

Example. Consider the round transformations of Midori-64 (see Section 1.1.1): denote
the “MixColumn” operation by M and the S-box by S. In [14], it was shown that
v⊗4 with

v = 1/2 · (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 1,−1)>
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is an eigenvector of [CS ]⊗4CMCK [CS ]⊗4CM . The coordinates of the above vector
are given in the lexicographically ordered character basis. One can show that the
same property also holds for w⊗4 with

w = 1/2 · (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0,−1,−1)>

provided that K4i−2 = K4i = 0 for i = 1, . . . 4. Hence, one has the invariant
V = Span{v⊗4, w⊗4} for 28 different keys K. Furthermore, for any K ′ ∈ F16

2 with
K ′

4i−2 = K ′
4i = 1, we have CK′

v⊗4 = w⊗4. Hence, CK′V = V for any K ′ satisfying
K ′

4i−2 = K ′
4i.

The same analysis leads to new weak keys for full-state Midori-64 under the
same changes to the round constants as in [14]. Let R denote the round function of
Midori-64:

CR = [CM ]⊗4CP [CS ]⊗16.

For each column of the state, one can rely on either of the invariants v⊗4 or w⊗4.
This leads to a strictly larger class of weak keys than reported in [14], for which

CK
′
CRCKCRCK

′
v⊗16 = ±v⊗16.

The number of weak keys can be counted as

4∑
k=0

(
4

k

)
216k+8(4−k)+32 = 264

4∑
k=0

(
4

k

)
28k ≈ 1.016 · 296.

.

3.3.6 Sampling Effect

The preceding sections were concerned with the construction of a model for F . This
is entirely independent from the evaluation of this model, which is typically done
using a relatively small sample of chosen or known plaintexts/ciphertexts. This
section briefly discusses the case of approximations defined by functions X → Y .
Note that the choice of the actual distinguisher (e.g. ranking, hypothesis testing…),
is not within the intended scope of this thesis.

Consider an approximation defined by two functions f, g : X → Y . Let N =
T gTF (T f )>, i.e. Ny,x = |{z ∈ X | f(z) = x ∧ g(F (z)) = y}|. In all attacks, the
distinguishing quantity (i.e. a test statistic) is derived from N . Let N̂ denote the
estimate of N obtained by evaluating F on x1, . . . ,xM , which are sampled with
replacement from X:

N̂y,x =
M∑
i=1

δx,f(xi)δy,g(F (xi)). (3.3)

By the multivariate central limit theorem [48], N̂ is asymptotically (for large M)
normally distributed. In fact, one expects a normal approximation to be quite good
when M is large and |Y | is sufficiently small. The convergence rate will not be
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discussed here. Should it be an issue, one can always use the fact that the exact
distribution of N̂ is multinomial.

The average value of N̂ is clearly equal to (M/|X|)N . Let Σ be the covariance
matrix of vec(N̂). That is,

Σ(y,x),(y′,x′) = EN̂y,xN̂y′,x′ −
[
M

|X|

]2
Ny,xNy′,x′ .

From (3.3), we get EN̂y,xN̂y′,x′ = (M/|X|)Ny,x δy,y′δx,x′+(M(M−1)/|X|2)Ny,xNy′,x′ .
Hence,

Σ =
M

|X|

[
diag (vec(N))− 1

|X|
N ⊗N

]
.

In practice, N is not known exactly. Instead, one estimates N (or its Fourier
transformation) using, for example, the piling-up approach. Obtaining a better
estimate for Σ, or more generally for the distribution of N̂ , requires an improved
model of the cipher – for example by increasing the dimension of the trail. One
should take into account that the model is imperfect when deciding on a statistical
distinguisher (but again, this will not be discussed).

Remark. In multiple linear cryptanalysis, one estimates (part of) the Fourier trans-
formation of N . There are many papers that discuss the distribution of the resulting
estimates. The discussion above should cover all cases. In fact, the essence of the
results above (for linear approximations) can also be found in the work of Murphy [81].

Of course, as discussed in Section 3.3.3, a multiple linear approximation with
masks u1, . . . , ul can only be completely described when all linear approximations
with masks in Span{u1, . . . , ul} are considered. In many cases, many of these linear
approximations can be assumed to have a negligible contribution. .

Remark. The discussion above is completely unrelated to the distribution of N̂ when
F involves a key which is taken to be random. In the single-key setting, knowing
the “right-key distribution” is mostly useful to obtain better estimates of the cost of
an attack. Of course, if the key-dependence is strong then it makes sense to take
this into account in the distinguisher. One could imagine doing the same thing in
the case of weak key-dependence – but most attacks just use the average of the
sum of squared correlations (when hypothesis testing is used) or are nonparametric
(ranking). .

3.3.7 Relation to Other Techniques

As mentioned in Section 3.3.2, many variants of linear cryptanalysis are based
on approximations of the type considered in Definition 3.5. Table 3.1 provides
a summary, but note that it is not exhaustive. The table shows that the theory
presented in this chapter provides a uniform description of the variants of linear
cryptanalysis that that were mentioned in Section 2.4. Note that Table 3.1 does not
list any techniques based on approximations with X or Y not vector spaces over
F2. For example, Baigères et al. [5] discuss linear cryptanalysis in the setting with
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X = Fnp and Y = Fp. One could also consider the case where X = Fnp but Y is not a
vector space over Fp – I am not aware of any attempts in this direction.

Although the theory developed this chapter provides generality, this is not its
sole purpose. Another important goal is to enable the use of many unexplored types
of approximations. Two examples, sparse and low-rank approximations, are listed in
Table 3.1 and will be discussed in Section 3.5.

Table 3.1: Classification of several techniques. Multiple and multidimensional
cryptanalysis are essentially equivalent as far as the modelling of the cipher is
concerned (at least when one starts from the approach outlined in Section 3.3.3).

Technique Refs. Exact dimV

Probability
Invariant subspaces/sets [71] � 1
Integral cryptanalysis∗ [41, 70] � 1
Statistical saturation† [36, 37] � ≥ 1

f : X → Y

Linear

Linear cryptanalysis [77] � 1
Zero-correlation —— [29] � ≥ 1
Multiple ————— [23,61] � > 1
Multidimensional — [55] � > 1
Conditional ———– [20] � > 1

Nonlinear

Nonlinear invariants [94] � 1
I/O sums [52] � 1
Partitioning attacks [53] � ≥ 1
Sparse approximation § 3.5.1 � ≥ 1
Low-rank ————— § 3.5.2 � ≥ 1

∗ To some extent; if one does not consider zero-sum properties.
† They use the transition matrix approach of Vaudenay, which is related to the
piling-up approach of Section 3.3.4 but without several essential aspects such as the
construction described in Section 3.3.3.
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3.4 Application to an Open Problem of Beierle et al.

This section applies the theory developed in Section 3.3 to a problem posed by Beierle,
Canteaut and Leander [9, Section 4.4]. They consider a nonlinear approximation over
two rounds of Midori-64, restricted to a single column of the state. The correlation
matrix corresponding to this map is given by

CEK1,K2 = CM [CS ]⊗4CK2CM [CS ]⊗4CK1 .

Recall from Section 2.4.4 that Beierle et al. [9] describe nonlinear approximations
using linear properties of a transformed representation of the cipher. The details of
their approach will not be discussed here; the framework developed in this chapter
will be used instead. The nonlinear property proposed by Beierle et al. amounts to a
one-dimensional approximation (u⊗ v⊗3, u⊗ v⊗3), with

u = 1/4 · (0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0, 1, 0,−1, 0,−3)>

v = 1/2 · (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1)>.

Note that the coordinates of the above vectors are given in the character basis with
lexicographic ordering.

3.4.1 Description of the Problem

Beierle et al. estimate the correlation of the two-round approximation described
above by iterating the following one-round trail, which has correlation at least ±9/32:

u⊗ v ⊗ v ⊗ v [CS ]⊗4CKi

−−−−−−−→
±1 or±1/2

u⊗ v ⊗ v ⊗ v CM

−−−→
9/16

u⊗ v ⊗ v ⊗ v. (3.4)

This was expected to hold whenever Ki ∈ F4
2 × K3 for i = 1, 2 and with K =

{(0, 0, x, y) | x, y ∈ F2}. Remark that, in general, computing the correlation over
CM is nontrivial. Beierle et al. essentially compute the inner product directly, which
is feasible in this case since the ambient space is only of dimension 216.

Based on this trail, one expects an absolute correlation of at least (9/32)2 ≈ 2−3.66

over EK1,K2 . However, Beierle et al. observe that this approximation is not accurate.
Specifically:

– When K2 ∈ (F4
2 \ K)×K3, the correlation is found to equal zero.

– For other keys, the correlation takes on various values, but is always significantly
larger than the estimated minimum of 2−3.66. Specifically, for K1,K2 ∈ K4, the
correlation ranges from 35/64 to 40/64 = 5/8. For other keys, it lies between
39/256 and 65/256.

In their conclusion, the authors remark that understanding this phenomenon is “a
major open problem”. Section 3.4.2 aims to clarify these observations.
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3.4.2 Solution to the Problem

In light of the results in Section 3.3.4, the observant reader will object to the use of
the trail (3.4). Indeed, the piling-up approximation presupposes a dominant trail,
but in this example the choice of the trail is essentially arbitrary. In such cases, one
must tread carefully.

The first step of the trail, i.e. the approximation of [CS ]⊗4CKi(u⊗ v⊗ v⊗ v) by
u⊗v⊗v⊗v, is the most problematic. If the absolute correlation of this approximation
is 1/2 – which is the case for most keys –, then there is another approximation which
also achieves correlation ±1/2. Furthermore, there is no particular reason to assume
that this second approximation leads to a worse approximation over the linear layer.

Since multiplication with [CS ]⊗4CKi does not result in a substantially more
complicated state – specifically, it preserves the rank – it seems more reasonable
to approximate only after the application of the linear layer. In general, this is a
nontrivial problem since CM (u⊗ v ⊗ v ⊗ v) need not be a low rank tensor. However,
for the linear layer of Midori-64, the following result can be applied.

Theorem 3.7. For any integer n ≥ 1, let Mn ∈ F4n×4n
2 be the matrix

Mn =


0 I I I
I 0 I I
I I 0 I
I I I 0

 ,

with I ∈ Fn×n2 . Then CMn has a symmetric polyadic decomposition

CMn = 2−n
∑

(i1,i2,...,in)∈[4]n
(
∏n
j=1 λij )

[
⊗nj=1 Aij

]⊗4
,

with λ1 = λ2 = λ3 = 1, λ4 = −1 and

A1 =

(
1 0
0 1

)
A3 =

(
1 0
0 −1

)
A2 =

(
0 1
1 0

)
A4 =

(
0 1
−1 0

)
.

That is, CMn has tensor rank at most 4n.

Proof. In the following proof, the entries of CMn are indexed by elements of Fn2 (as
opposed to F̂n2 ). The decomposition can be derived by induction on n. For n = 1,
one can check that

CM1 =
1

2

[(
1 0
0 1

)⊗4

+

(
0 1
1 0

)⊗4

+

(
1 0
0 −1

)⊗4

−
(

0 1
−1 0

)⊗4
]
.

For n > 1, Theorem 2.1, (4) implies that

CMn
u1,u2,u3,u4,v1,v2,v3,v4 = δ

 4∑
j=1


uj
uj
uj
uj

+


u1
u2
u3
u4

+


v1
v2
v3
v4


 =

4∏
i=1

δ
(
ui + vi +

∑4
j=1 uj

)
.
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Let u(1)i denote the leftmost bit of ui and let u(2,...,n)i denote the other n − 1 bits.
Then

δ
(
ui+vi+

∑4
j=1 uj

)
= δ
(
u
(1)
i +v

(1)
i +

∑4
j=1 u

(1)
j

)
δ
(
u
(2,...,n)
i +v

(2,...,n)
i +

∑4
j=1 u

(2,...,n)
j

)
.

It suffices to find the decomposition of the first term. Indeed, if

CMn−1 = 2−n+1
∑

(i1,i2,...,in−1)∈[4]n−1

(
∏n−1
j=1 λij )

[
⊗n−1
j=1 Aij

]⊗4
,

then we have

CMn
u1,u2,u3,u4,v1,v2,v3,v4

= 2−n+1
4∏
i=1

δ
(
u
(1)
i + v

(1)
i +

∑4
j=1 u

(1)
j

)
∑

(i1,i2,...,in−1)∈[4]n−1

∏n−1
j=1 λij (A

⊗4
ij

)
u
(2,...,n)
1 ,...,u

(2,...,n)
4 ,v

(2,...,n)
1 ,...,v

(2,...,n)
4

.

The decomposition of the first factor above is equivalent to the base case, i.e. n = 1.
Finally, the result follows by the definition of the Kronecker product.

Let K1 = k1‖k2‖ · · · ‖k16 and K2 = k′1‖k′2‖ · · · ‖k′16. Remark that v is invariant
under the key-addition operation for keys in K. Hence the key bits k5, . . . , k16
only influence the sign of the correlation. A convenient strategy to compute the
correlation or to identify the best trails is to propagate u⊗ v⊗3 in both the forward
direction (under the map CM [CS ]⊗4CK1) and backward direction (under the map
CK2 [CS ]⊗4CM ). In the forward direction, we have

CM [CS ]⊗4CK1(u⊗ v ⊗ v ⊗ v)
= ν CM [(CSCk1‖···‖k4u)⊗ v ⊗ v ⊗ v]

= ν/2 (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)> ⊗
( 16∑
i=1

ci v
⊗3
i

)
,

where the last equality follows from Theorem 3.7. The vectors vi and corresponding
coefficients ci are listed in Table 3.2. The sign ν is given by ν =

∏4
i=2(−1)k4i−1+k4i .

Observe that the first factor (up to a factor −1/2) is equal to v.
For the backward direction, it holds that

CK2 [CS ]⊗4CM (u⊗ v ⊗ v ⊗ v)

= ν ′/2 (0, 0, 0, 1, 0, 0, 0, (−1)k′2 , 0, 0, 0, (−1)1+k′1 , 0, 0, 0, (−1)k′1+k′2)>

⊗
( 8∑
i=1

c′i
3⊗
j=1

(Ck
′
4j‖···‖k′4j+4v′i)

)
.

In the above, ν ′ = (−1)k′3+k′4 . Table 3.3 lists the coefficients c′i and vectors v′i.
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Table 3.2: Vectors vi and corresponding coefficients in the forward decomposition.
The notation κi = (−1)ki is used.

i 2 v>i κ4 ci

1 (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1) 1/32 (3κ1κ2κ3 + κ1κ2 − κ1κ3 − κ1 + 2κ2)

2 (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1) −1/32 (κ1κ3 − 2κ2κ3 + κ1 + 2κ2 + κ3 + 1)

3 (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1) −1/16κ3 (3κ1κ2 + κ1 + κ2 + 1)

4 (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1) 1/32 (3κ1κ2κ3 − κ1κ2 + 2κ1 − κ3 + 1)

5 (0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0) 1/32 (2κ1κ2 + κ1κ3 − κ1 − κ3 − 1)

6 (0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0) −1/32 (3κ1κ2κ3 − κ1κ2 + κ1κ3 − 2κ2κ3 − κ1)

7 (0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0) −1/32 (3κ1κ2κ3 + κ1κ2 − 2κ2κ3 − 2κ2 + κ3 − 1)

8 (0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0) −1/16 (κ2 − 1)

9 (0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0) 1/32κ1 (3κ2κ3 + κ2 − κ3 + 1)

10 (0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0) −1/32 (2κ1κ2 + κ1κ3 + κ1 − κ3 + 1)

11 (0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0) 1/16κ3 (3κ1κ2 − 1)

12 (0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0) 1/32 (3κ1κ2κ3 + κ1κ2 − 2κ1κ3 + κ3 + 1)

13 ( 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) −1/32 (κ1κ3 − κ1 − κ3 + 1)

14 ( 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0) −1/32κ1 (3κ2κ3 − κ2 − κ3 − 1)

15 (−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0) −1/32 (3κ1κ2κ3 − κ1κ2 − κ3 − 1)

16 (−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0) 1/16 (κ1 − 1)

Remark that the occurrence of correlation zero when K2 ∈ (F4
2 \ K)×K3 is an

immediate consequence of the above. Indeed, it holds that

(0, 0, 0, 1, 0, 0, 0, (−1)k′2 , 0, 0, 0, (−1)1+k′1 , 0, 0, 0, (−1)k′1+k′2)
· (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)>

= 1 + (−1)k′1 + (−1)k′2 + (−1)k′1+k′2 ,

which equals zero unless k′1 = k′2 = 0.
For K2 ∈ K4, the total correlation is given by

νν ′
〈 16∑
i=1

ci v
⊗3
i ,

8∑
j=1

c′j
3⊗
l=1

(Ck
′
4l‖···‖k

′
4l+4v′j)

〉
= νν ′

16∑
i=1

8∑
j=1

cic
′
j

3∏
l=1

〈vi, Ck
′
4l‖···‖k

′
4l+4v′j〉.

In principle, the above expression can be used to compute the correlation for arbitrary
keys. This is feasible, but offers little insight. Instead, it is preferable to estimate
the correlation based on a trail of low-rank approximations.

It turns out that a single rank-one trail suffices to obtain a reasonably accurate
estimate when K2 ∈ K4. Remark that |〈vi, Ck

′
4l‖···‖k

′
4l+4v′j〉| ≤ 1/2 unless i = 3 and

j = 1, in which case it equals one. That is, the term c3 c
′
1 has weight one whereas

the other terms are multiplied by a factor of at most 2−3.
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Table 3.3: Vectors v′i and corresponding coefficients in the backward decomposition.
The notation κi = (−1)k

′
4j+i is used.

i 4 (Ck
′
4j‖···‖k′4j+4v′i)

> c′i

1 2(0, 0, 0, −1, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, −1) −3/8κ3κ4

2 2(0, 0,−κ3,−κ2κ3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−κ3, κ3κ4) 1/8

3 (0, 0, 2κ3, 0,−2, 0, 0, 0,−1, κ4, κ3, κ3κ4, 1, κ4,−κ3, κ3κ4) 1/8

4 (0, 0, 0, 0, 0,−2κ4, 2κ3, 0, 1,−κ4,−κ3, κ3κ4, 1, κ4, κ3, κ3κ4) 1/8

5 (0, κ4, 0,−κ3κ4,−1, 2κ4, κ3, 2κ3κ4, 0,−κ4, 0, κ3κ4,−1, 0, κ4, 0) −1/8

6 (0,−κ4, 0,−κ3κ4, 1, 0, κ3, 0,−1, 2κ4, κ3, 0, 0, −κ4, 2κ3, κ3κ4) 1/8

7 (0,−κ4, 0, κ3κ4, 1, 0,−κ3, 0, 1, 0, κ3, 2κ3κ4,−2, κ4, 0, κ3κ4) 1/8

8 (0, κ4, 0, κ3κ4, 1, 0, κ3, 0, 0,−κ4, 2κ3, κ3κ4, 1,−2κ4,−κ3, 0) −1/8

Remark that v3 = v′1 = v, so the paragraph above suggests the use of the
intermediate approximation v⊗4. It is not a coincidence that v⊗4 itself is an invariant
for the weak-key class K4. The absolute value of the corresponding correlation is
equal to

|c3 c′1| = 3/32 |3 (−1)k1+k2 + (−1)k1 + (−1)k2 + 1|
= 3/8 |δk1δk2 + 1/2 (−1)k1+k2 |

=

{
9/16 if k1 = k2 = 0

3/16 otherwise.

These values are close to the experimental values reported by Beierle et al. [9].
Specifically, the relative error is less than 10% in the first case and less than 30%
in the second case; in Section 3.4.3, this will be improved by taking into account
additional trails. In addition, one can show that the sign of the correlation is given
by

4∏
i=1

(−1)k′4i−1+k
′
4i+k4i−1+k4i .

In conclusion, for K2 ∈ K4 (that is, when the correlation is not zero), the nonlinear
approximation considered by Beierle et al. is dominated by the following trail:

u⊗ v⊗3 [CS ]⊗4CK1

−−−−−−−−→
±3/4 or±1/4

v⊗4 CM

−−→
1

v⊗4 [CS ]⊗4CK2

−−−−−−−→
±1

v⊗4 CM

−−→
3/4

u⊗ v⊗3.

One might have anticipated the above trail without relying on Theorem 3.7: the
choice of v⊗4 as an intermediate state is a natural choice, since it is invariant under the
round function and because 〈u, v〉 = 3/4 and 〈v, C0‖0‖k3‖k4u〉 = ±1/4. Nevertheless,
an intuitive selection of trails is error prone. Theorem 3.7 essentially provides an
automatic and general way to analyze rank one approximations over two rounds of
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Midori-64. Since the tensor rank of CM is at most 256, one can always understand
such approximations using a relatively low-dimensional vector space trail spanned
by rank one states. This is quite a remarkable result; e.g. it includes all two-round
linear approximations.

3.4.3 Further Analysis

The analysis in Section 3.4.2 can be refined by taking into account additional trails.
In fact, when considering all trails, one obtains the exact value of the correlation. It
follows from the discussion in the previous section that (for K2 ∈ K4) the absolute
correlation is given by

∣∣∣ 16∑
i=1

ci

8∑
j=1

c′j

3∏
l=1

〈vi, Ck
′
4l‖···‖k

′
4l+4v′j〉

∣∣∣,
with ci, vi listed in Table 3.2 and c′j , v′j in Table 3.3. It turns out that ten terms
in the outer sum are nonzero, namely those with i ∈ {1, 2, 3, 4, 5, 6, 9, 10, 11, 12}. In
addition, for each i, typically only a few terms of the inner sum can be nonzero for
some key. A symbolic computation using sage (source code listed online4) then
yields the following expression for the absolute correlation∣∣303/1024 (−1)k1+k2+k3+s3+s4 + 189/2048 [1 + (−1)k1 ](−1)k3+s3+s4

+ 47/512 (−1)k2+k3+s3+s4 + 69/2048 (−1)k1+k2+k3+s4 + 17/2048 (−1)k1+k2+s4

− 1/128 (−1)k3+s4 + 7/1024 (−1)k2+s3+s4 + 5/1024 (−1)s4

+ 9/2048 [1− (−1)k3 ] (−1)k1+k2+k3+s3

+ 7/2048 [1 + (−1)s3 + (−1)k1 − (−1)s3+s4 ] (−1)k1+s3+s4

− 3/1024 (−1)k2+k3+s3 + 3/2048 [1 + (−1)k3 ] (−1)k3+s3
∣∣,

with s3 =
∑4

i=2 k
′
4i−1 and s4 =

∑4
i=2 k

′
4i. One can check that the expression above

indeed corresponds exactly to the values observed by Beierle et al..

4https://homes.esat.kuleuven.be/~tbeyne/masterthesis/midori64.html
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3.5 Practical Aspects

This section discusses important practical questions: which approximation types can
be used in practice, and how does one find the best among these approximations?
An important aspect in this context is the choice of the set of acceptable trails, i.e.
T in the notation from Section 3.3.4. For simplicity of notation, it will be assumed
that the vector spaces in a trail are all chosen from the same set T . The choice of T
is essentially restricted by the requirement that it must be feasible to approximate
the solution to the optimization problem

max
V0,...,Vr∈T r+1

J (
∏r
i=1 T

Fr−i+1

Vr−i+1,Vr−i
), (3.5)

where J is some cost function, e.g. the 2-norm or the Frobenius norm. A minimum
requirement is that it must be possible to evaluate the cost function. This leads to
the following constraints:

– The dimension of the vector spaces in T should be low, to avoid large memory
usage and computational cost.

– There should a basis matrix Vi of Vi such that is possible to compute V ∗
i+1T

FiVi.
Of course, this also depends on the choice of Fi.

– If the function F involves an unknown key, it is typically desired that the
solution to (3.5) is valid for a significant fraction of keys.

In permutation-based cryptography, the last restriction listed above does not apply.
This paves the way for a potentially wide variety of different types of approximations.
A few choices of T are proposed below.

3.5.1 Linear and Sparse Approximations

In linear cryptanalysis, one uses a basis consisting of character functions of CG.
Equivalently, when working in CĜ, such a basis is a subset of {δχ | χ ∈ Ĝ}. A natural
variation on this is to use sparse basis functions. In a block cipher, it is probably
more interesting to use a low-dimensional vector space spanned by characters – that
is, linear cryptanalysis using several one-dimensional trails. However, for keyless
permutations more accurate results can be obtained using a sparse basis, because
this allows taking into account clustering over a small number of rounds.

In many constructions, it should be feasible to propagate sparse vectors exactly
over a few rounds. Indeed, the correlation matrix of the nonlinear layer is typically a
tensor product of several small matrices. Hence, products with sparse vectors can be
computed using a divide-and-conquer approach (similar to the FFT). Applying the
linear layer amounts to permuting a sparse vector, which is a cheap operation. Of
course, one still needs to solve a (difficult) optimization problem of the type (3.5); a
heuristic approach may however suffice. Further development of this method is left
as future work.
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3.5.2 Rank One Approximations

A different class of approximations consists in choosing basis vectors of tensor rank one
(in some well-defined sense). Such approximations already made a brief appearance
in Section 3.4 and are a particularly attractive choice when the function of interest
F is cell-oriented. That is, we assume that F operates on a group X = G = ⊕mi=1Gi;
however, note that the choice of the group G is not necessarily unique. As mentioned
in Section 3.3.3, a function f :

∏m
i=1X → Y such that f(x1, . . . , xm) =

∑m
i=1 fi(xi)

can be associated with a vector space spanned by rank-one tensors in ⊗mi=1CGi. One
can give several intuitive reasons why such approximations might be useful:

– Computing inner products between rank one tensors reduces to computing m
inner products of short vectors.

– Due to the cell-oriented structure of the cipher, it is possible to compute the
exact result of the S-box layer on such states – but the effect of the linear layer
is nontrivial.

– For several block ciphers, there exist rank one tensors which are invariants as
in [14].

– A rank one tensor represents a state with independent cells. Hence, one can
think of a low rank approximation as a mixture of states with independent
cells.

Consider the one-dimensional case, i.e. dimV1 = . . . = dimVr = 1. In this
case, (3.5) can be interpreted as an optimization problem over the product of spheres∏m
i=1 S|Gi|, which is a manifold. It is again preferable to work in the Fourier basis,

since this makes it easy to look only for balanced approximations and, simultaneously,
to eliminate the trivial approximation δχ0 . One then obtains the optimization problem

max
f
(j)
i ∈{0}×S|Gi|−1

for j=1,...,m
i=0,...,r

r∑
i=1

log |〈⊗mj=1f
(j)
i , CFi ⊗mj=1 f

(j)
i−1〉|, (3.6)

where f (j)i should be interpreted as an element of CĜi, given by its coordinates in
the basis {δχ | χ ∈ CĜ} with δχ0 considered as the first basis element. Note that
f
(j)
i ∈ {0} × S|Gi|−1 then amounts to requiring that cell j in round i is active and

balanced. One can require that the cell is inactive by setting f (j)i = δχ0 . The use
of the logarithm in the cost function helps to avoid excessively small objective and
gradient values.

Remark. The problem (3.6) does not impose that the vectors f (j)i correspond to
nonlinear Boolean functions as outlined in Section 3.3.3. In this sense, (3.6) is a
relaxation of a problem which is in principle discrete. As illustrated below, this does
not appear to be a problem in practice – rounding the solution is sufficient. .
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The optimization problem (3.6) may have many local optima and one runs into
trouble when m or the number of rounds r is large. Fortunately, it is not necessary to
solve the full-round problem in order to obtain useful results. This will be illustrated
using the block cipher Midori-64. The problem (3.6) will be solved for r = 1 and
CF1 = [CS ]⊗4CM [CS ]⊗4 or equivalently CF1 = CM . As illustrated below, even this
limited case has interesting applications. Remark that the key addition is omitted:
this implies that the obtained property need not hold for many keys, but it also
simplifies the problem significantly. Equivalently, the block cipher is treated as a
permutation – an improved method that explicitly takes into account key-dependence
is left as future work. The cost function can be evaluated efficiently by using the
polyadic decomposition of CM from Theorem 3.7. For other linear layers, one either
has to compute such a decomposition or use a more direct approach. For Midori-64,
the latter is feasible but significantly more expensive.

The following example serves as a proof-of-concept of the method sketched above.
Another example with more practical relevance is provided in Section 3.5.3. The
optimization problem (3.6) was solved using (Riemannian) conjugate gradient based
on the pymanopt library [95] (full implementation available online5).

Example. Consider the optimization problem

max
f
(j)
0 , f

(j)
1 ∈{0}×S15

for j=1,...,4

log |〈⊗4
j=1C

Sf
(j)
1 , CM ⊗4

j=1 C
Sf

(j)
0 〉|.

Remark that the choice of CS does not matter. Several solutions to this problem
are known from the analysis of invariants in Midori-64. These correspond to a cost
of zero, i.e. correlation one. The conjugate gradient method converges quickly
and yields other optimal approximations, depending on the initial guess. To search
specifically for invariants, one can set f (j)0 = f

(j)
1 for j = 1, . . . 4. This indeed results

in additional invariants which are, contrary to previous examples, not symmetric.
One example is

f
(1)
0 = f

(3)
0 = (0, 1/4, 0, 1/4, 1/4, 0,−1/4, 1/2, 0,−1/4, 0,−1/4, 1/4, 1/2,−1/4, 0)>

f
(2)
0 = f

(4)
0 = (0,−1/4, 1/2, 1/4, 1/4, 0, 1/4, 0, 1/4, 0, 1/4, 0,−1/2, 1/4, 0,−1/4)>.

One can check that this defines an invariant for 28 weak keys. However, due its
asymmetry, it is of limited practical interest. Symmetry can be required by setting
f
(1)
0 = f

(2)
0 = f

(3)
0 = f

(4)
0 , but all such invariants were already classified in the

author’s earlier work [14]. .

3.5.3 Another Approximation over Midori-64

This section contains another example of a rank one approximation over Midori-64.
The example is based on known invariants of the Midori-64 round function, but is
not an invariant itself. In the following, X = F64

2 and we work in CX̂.
5https://homes.esat.kuleuven.be/~tbeyne/masterthesis/manifold.html
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From previous work, it is known that the vectors v⊗16, δ⊗16
χ5

with v = CSδχ5 de-
termine an invariant of Midori-64 for slightly modified round constants. In particular,
we have CMδ⊗4

χ5
= δ⊗4

χ5
and CMv⊗4 = v⊗4. One can additionally verify that the best

rank one approximation of CM [v⊗2 ⊗ δ⊗2
χ0

] is given by v⊗2 ⊗ δ⊗2
χ0

and has correlation

〈v⊗2 ⊗ δ⊗2
χ0
, CM [v⊗2 ⊗ δ⊗2

χ0
]〉 = 1/4.

Due to the symmetry of CM , the same holds when the order of the factors v and δχ0

is permuted. To obtain more weak keys, at the cost of a lower correlation, one can
split this nonlinear approximation into 28 approximations which are linear at the
input side. Indeed, v is a linear combination of δχA , δχB , δχE and δχF .

Figure 3.2 shows the resulting trails over 6.5 rounds of Midori-64. Some transitions
require assumptions on the key. Hence, the trails are only valid for 296 keys – but
one can easily modify the first state to obtain similar trails for 216 different classes of
weak keys. Equivalently, without whitening keys, the trail is valid for 2112 weak keys.

Each of the 28 trails shown in Figure 3.2 has absolute correlation 2−24. As
discussed above, for some keys clustering results in a correlation of 2−16. More
generally, the degree of clustering depends on the number of solutions i, j, k, l ∈
{A, B, E, F} of

i>(K1,1 +K1,2 + C2,1 + C2,2) + j>(K1,7 +K1,8 + C2,7 + C2,8)+

k>(K1,9 +K1,10 + C2,9 + C2,10) + l>(K1,15 +K1,16 + C2,15 + C2,16) = 0,
(3.7)

where K1 is the second round key and C2 the round constant added in the second
round. The second subscripts refer to the indices of bits within these values.

For all-zero round keys, experimentally (using a sample of 244 plaintexts/cipher-
texts) a correlation of 2−15.59 was observed. Note that the Midori-64 specification [6]
bounds the correlation of linear six round trails by 2−30; but such trails have only 30
active S-boxes, as opposed to 48 in Figure 3.2.

Since the correlation of the property in Figure 3.2 is quite large, and since the
assumptions on the key do not yet conflict, it is worthwhile to attempt an extension
to more rounds. Figure 3.3 shows an extension to 10.5 rounds, but this extension
does require some changes6 to the (default) round constants. Another disadvantage
of the property in Figure 3.3 is that the weak key density (for correlation 2−24) is
reduced by a factor 2−12. This is due to a second clustering requirement, but now on
K0 rather than K1. Note that the weak-key density decreases by 2−12 rather than
2−16, because there is some overlap between restrictions imposed by the clustering
and the invariant requirements. Hence, the number of weak keys for Figure 3.3 is at
least 284. A more careful analysis of the condition (3.7) could reveal additional weak
keys, but this will be left open for now.

6The requirement on the round constants is that the round constants in round 5 and 9 are equal
in the first and third columns, and that the two relevant bits for the invariant are the same for the
first (top) two cells in these columns.
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1

Figure 3.2: Nonlinear approximations over 6.5 rounds of Midori-64 with absolute
correlation 2−24 for 296 (extends to 2112) weak keys. For some keys, these trails can
be combined leading to an absolute correlation of 2−16.
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Figure 3.3: Nonlinear property over 10.5 rounds of Midori-64 (with modified con-
stants) with correlation 2−24 for 284 weak keys.
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3.6 Conclusion
A general framework for the analysis of linear and nonlinear approximations in
the fixed and weak key settings was introduced. As illustrated by Table 3.1, this
“geometric approach” provides a uniform description of many variants of linear
cryptanalysis.

Linear approximations were generalized by considering pairs of vector spaces
in the inner product space CG or CĜ. These vector spaces can be related to sets,
probability distributions or nonlinear (vectorial) Boolean functions. The classical
notion of correlation generalizes to the cosines of the principal angles between such
vector spaces. The standard piling-up approach was extended to this general setting.
It was shown how the piling-up approximation can be interpreted as a sequence
of successive orthogonal projections. This gave rise to the concept of vector space
trails. In addition, the possibility of more general invariants and zero-correlation
approximations has been raised.

In Section 3.4, an open problem of Beierle et al. was resolved by consistently
applying the theoretical framework that was introduced in this chapter. Finally, the
choice of the type of approximations was discussed from a practical point of view.
As a proof of concept, it was shown how rank one approximations can be found by
solving a manifold optmization problem. In addition, good rank-one approximations
for 6.5 and 10.5 rounds of Midori-64 were given as an example.

The primary goal of this chapter was to lay the foundations of a new theoretical
framework for linear cryptanalysis and its variants. Future work should focus on the
application of that theory to the cryptanalysis of primitives. On the one hand, this
will allow a more detailed analysis of cryptanalytic properties that are already in
use. On the other hand, the newly introduced types of approximations should enable
more powerful attacks on block ciphers (particularly in the weak key setting) and
cryptographic permutations.
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Chapter 4

Clustering of Linear Trails

This chapter takes up the problem of linear trail clustering. As discussed at the
end of Section 3.3.4, this is equivalent to providing upper bounds on the correlation
of linear approximations in the weak key setting. The first part of this chapter
considers linear approximations over two rounds of a block cipher. Specifically, the
introductory Section 4.1 illustrates some of the difficulties related to weak key upper
bounds. The main result, Theorem 4.1, is derived and illustrated in Section 4.2.
Finally, Section 4.3 provides provisional results related to linear approximations over
more than two rounds.

4.1 Introduction
The focus of this chapter is exclusively on block ciphers. Specifically, as for the vari-
ance bounds that were discussed in Section 2.3.2, the focus is on linear approximations
over functions of the form

FK(x) = S(L(S(x)) +K),

with S = (S1, . . . , Sm). These functions arise when considering linear approximations
over two rounds of an SPN. The possibility of obtaining results for more than two
rounds will be discussed in Section 4.3.

The correlation of a linear approximation over FK with masks a = a1‖ · · · ‖am
and b = b1‖ · · · ‖bm can be expressed as

c = 〈CS−1
δχb

, CKCL
>
CSδχa〉 = 〈⊗mi=1(C

Si
·,χbi

)>, CKCL
> ⊗mi=1 C

Si
·,χai
〉. (4.1)

Recall from Section 2.2 that the required amount of known plaintexts to achieve a
fixed success probability and false positive rate is proportional to 1/c2 with c the
correlation of the underlying linear approximation. Since c depends on the key, the
variance bounds from Section 2.3.2 appear to provide only an average-case (for a
random key) lower bound on the data complexity. Indeed, by Jensen’s inequality,
E[1/c2] ≥ 1/Ec2.

Average-case bounds do not rule out weak key attacks. A strong upper bound
on c that holds for all keys is desired, but this is too hopeful. Instead, one can

59



4. Clustering of Linear Trails

consider probabilistic bounds: for how many keys can the correlation be larger than
a given value? This corresponds to a tail bound on the probability distribution of
the correlation c for a random key. If an upper bound on the variance is available,
Chebyshev’s inequality provides one such bound:

Pr
[
|c| ≥ t

√
Ec2

]
≤ 1/t2.

However, the Chebyshev bound is rather weak – indeed, Theorem 2.2 implies the
superexponentially decreasing bound 2e−t

2/2 for random permutations. Nevertheless,
as illustrated in the following section, the Chebyshev bound is sometimes tight.

4.1.1 Tightness of the Chebyshev bound: Midori-64

It will be shown that for a linear approximation over two rounds of Midori-64 with
a1 = . . . am = 5 = b1 = . . . = bm, the Chebyshev bound can be tight. As discussed in
Section 3.5.3, for 28 out of 216 keys, δ⊗4

χ5
is an invariant for [CS ]⊗4CKCM [CS ]⊗4. The

branch number of the linear layer M equals four, so Theorem 2.3 yields Ec2 ≤ 2−6.
Hence, Pr

[
|c| = 1

]
≤ 2−6 – not yet tight. However, in this case, the variance bound

from Theorem 2.3 can be improved when all S-boxes are active. Let f = CS
·,χa

and
g> = CS

χb,·, then

Ec2 =
∑
u∈Fn

2

f2χu
g2χMu

≤
l∑

i=1

c2iNi,

with 0 = c1 < c2 < · · · < cl and Ni an upper bound on the number of linear trails
with correlation between ci and ci+1. This approach is feasible because many choices
of the masks a and b result in the same values of c1, . . . , cl and N1, . . . , Nl.

For Midori-64, one has five possible distributions of f2χu
and g2χu

, see Table 4.1.
Hence, there are only ten possible distributions for the total correlation. The
maximum variance is 2−8, corresponding to the first row of Table 4.1. This yields
the tight bound Pr

[
|c| = 1

]
≤ 2−8.

Table 4.1: Possible distributions of linear trail correlations over four parallel Midori-64
S-boxes. The first row results in the optimal bound: 256 · (2−8)2 = 2−8.

c2 2−8 2−10 2−12 2−14 2−16

256
128 512
64 512 1024
32 384 1536 2048
16 256 1536 4096 4096
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4.1.2 Alternative S-boxes for Midori-64

To obtain a better bound using the enumeration technique from Section 4.1.1, each
column and row of the correlation matrix CS of the S-box should be supported on a set
of size exceeding four. Indeed, this ensures that there can not be as many as 256 trails
with correlation 2−8; instead, there will be more trails but with significantly smaller
correlations. The resulting S-boxes will serve as a useful reference in Section 4.2.

It is not hard to show that only eight out of 302 classes of affinely-equivalent [33]
4-bit S-boxes satisfy the above condition, while also achieving optimal nonlinearity.
Table 4.2 provides an example. The variance upper bound is as determined by the

Table 4.2: S-box satisfying the conditions outlined in Section 4.1.2.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 0 1 2 3 4 6 8 c 5 9 b d e a 7 f

the last row of Table 4.1:

16 · 2−16 + 256 · 2−20 + 1536 · 2−24 + 4096 · 2−28 + 4096 · 2−32 = 625 · 2−20.

In fact, for the S-boxes in each of these eight classes, one can additionally show that
no vector v⊗4 with v a column of CS or CS−1 is an eigenvector of CM . This follows
from the author’s previous work [14, Theorem 9].

4.2 Moments Method
One can sometimes improve upon Chebyshev’s bound by considering higher moments.
Indeed, by applying Markov’s inequality to |c|q, one obtains (suppose q ≥ 2)

Pr
[
|c| ≥ t q

√
E|c|q

]
≤ 1/tq.

Since |c| ≤ 1, such bounds are only useful when the qth moment E|c|q is not too
large. Specifically, an improvement over the Chebyshev bound is only achieved when
comparing |c| with correlations exceeding (E|c|q/Ec2)1/(q−2).

The moment method consists in upper bounding the absolute qth moments E|c|q
with c the correlation as defined by (4.1) for a random key. For technical reasons, it
will be assumed that q is even. Section 4.2.1 proceeds by deriving a general upper
bound, which will be applied to the specific case of (4.1) in Section 4.2.2.

4.2.1 General Upper Bound

The main result of this section (Theorem 4.1) considers arbitrary rank-one approxi-
mations. That is, upper bounds are derived for

E 〈f , CLg〉q = E 〈⊗mi=1f
i, CL ⊗mi=1 g

i〉q,

where f i and gi, i = 1, . . . ,m are independent random variables. The proof of
Theorem 4.1 below makes use of the following consequence of Hölder’s inequality. It
also appears in the proof of Theorem 2.3 by Park et al. [87].
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Lemma 4.1 (Park et al. [87]). For i = 1, . . . , l, let x(i)1 , . . . , x
(i)
k be non-negative real

numbers. It holds that
l∑

i=1

k∏
j=1

x
(j)
i ≤ max

1≤j≤k

l∑
i=1

[
x
(j)
i

]k
.

Proof. The following proof is given by Park et al. [87, Lemmas 1 and 2]. Hölder’s
inequality implies that

l∑
i=1

k∏
j=1

x
(j)
i ≤

k∏
j=1

( l∑
i=1

[
x
(j)
i

]k)1/k
.

The result follows by upper bounding each factor in the resulting product by the
largest factor.

The main result will now be stated. To simplify notation, the convention will
be used that CL represents an operator on CFn2 rather than CF̂n2 . As discussed in
Chapter 3, this can be done by identifying Fn2 with F̂n2 through the isomorphism
u 7→ χu.

Theorem 4.1 (Moment upper bound). Let L : Fn2 → Fn2 be a linear map such that
L> has branch number d. Suppose further that f = ⊗mi=1f

i and g = ⊗mi=1g
i with

{f i}mi=1 and {gi}mi=1 independent random variables on RFn2 . Then for any even
integer q > 1, it holds that

E 〈f , CLg〉q ≤
√
αq,1βq,1

N−d max{αq,d, βq,d},

with N = |{i ∈ [m] | f i 6≡ δ0}|+ |{i ∈ [m] | gi 6≡ δ0}| the number of active cells, and
(with V = Fn/m2 )

αq,e = max
j∈[m]

∑
w1,...,wq∈V \{0}

∣∣∣E q∏
i=1

f jwi

∣∣∣e,
βq,e = max

j∈[m]

∑
w1,...,wq∈V \{0}

∣∣∣E q∏
i=1

gjwi

∣∣∣e.
Proof. The proof is similar to that of Theorem 2.3 due to Park et al. [87], but
considerably more technical. Let M = L>. The qth moment can be expressed as

E 〈f , CLg〉q = E
q∏
i=1

∑
u∈Fn

2

fu gMu, (4.2)

Expanding the right hand side of (4.2) yields

E 〈f , CLg〉q =
∑

u1,...,uq∈Fn
2

E
q∏
i=1

fui gMui =
∑

u1,...,uq∈Vm

E
q∏
i=1

m∏
j=1

f jui,jg
j
vi,j ,
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where for ui ∈ V m ∼= Fn2 , we write ui = (ui,1, . . . , ui,m) with ui,j ∈ V and similarly
for vi = Mui. Now let A = {j ∈ [m] | f j 6≡ δ0} and B = {j ∈ [m] | gj 6≡ δ0}.
Remark that, by definition of the branch number, |A|+ |B| ≥ d. It then follows that

E 〈f , CLg〉q =
∑

u1,...,uq∈Vm

E
q∏
i=1

(∏
j∈B

f jui,j

)(∏
j∈A

gjvi,j

)( ∏
j∈[m]\B

δui,j

)( ∏
j∈[m]\A

δvi,j

)
.

In the right-hand side above, one can exclude all terms of the sum which do not
satisfy the conditions

vi,j 6= 0 for j ∈ A and vi,j = 0 for j ∈ [m] \A,
ui,j 6= 0 for j ∈ B and ui,j = 0 for j ∈ [m] \B.

Let Z denote the set of pairs (ui, vi) such that the above conditions are satisfied.
Then one can write

E 〈f , CLg〉q =
∑

(u1,v1),...,(uq ,vq)∈Z

E
q∏
i=1

(∏
j∈B

f jui,j

)(∏
j∈A

gjvi,j

)
.

By the triangle inequality (recall that q is even),

E 〈f , CLg〉q ≤
∑

(u1,v1),...,(uq ,vq)∈Z

∣∣∣E q∏
i=1

(∏
j∈B

f jui,j

)(∏
j∈A

gjvi,j

)∣∣∣
=

∑
(u1,v1),...,(uq ,vq)∈Z

(∏
j∈B

∣∣∣E q∏
i=1

f jui,j

∣∣∣)(∏
j∈A

∣∣∣E q∏
i=1

gjvi,j

∣∣∣),
where we have used the independence of the random variables {f j}mj=1 and {gj}mj=1.

The remaining work is similar to the reasoning of Park et al. [87], but notationally
somewhat heavier. Recall that |A|+ |B| ≥ d. Hence, we can apply Lemma 4.1 with
k ≥ d. Taking a large value of k is in principle beneficial, but it is also necessary to
restrict the set Z. As will be shown below, this requires k = d.

Let r = |A|+ |B| − d and choose sets A∗ ⊆ A and B∗ ⊆ B with |A∗|+ |B∗| = r.
For arbitrary constants v∗i,j ∈ V with j ∈ A∗ and u∗i,j ∈ V with j ∈ B∗, let

Z̄u∗i ,v∗i = {(ui, vi) ∈ Z | ∀j ∈ A∗, j′ ∈ B∗ : vi,j = v∗i,j ∧ ui,j′ = u∗i,j′}.

That is, Z̄u∗i ,v∗i is obtained by fixing the value of some of the coordinates of the elements
of Z. The idea behind this is as follows: for all distinct (ui, vi), (u

′
i, v

′
i) ∈ Z̄u∗i ,v∗i , we

have vi,j 6= v′i,j when j 6∈ A∗ and ui,j 6= u′i,j when j 6∈ B∗. Indeed, this is true by the
definition of the branch number. Using these definitions, one obtains

E 〈f , CLg〉q ≤
∑

u∗1,...,u
∗
q

v∗1 ,...,v
∗
q

∑
(ul,vl)∈Z̄u∗

l
,v∗

l
: l∈[q]

(∏
j∈B

∣∣∣E q∏
i=1

f jui,j

∣∣∣)(∏
j∈A

∣∣∣E q∏
i=1

gjvi,j

∣∣∣),
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where the first sum ranges over all possible |V |rq assignments to the variables u∗i,j
and v∗i,j . Lemma 4.1 can now be applied to obtain the upper bound

∑
(ul,vl)∈Z̄u∗

l
,v∗

l
: l∈[q]

( ∏
j∈B\B∗

∣∣∣E q∏
i=1

f jui,j

∣∣∣)( ∏
j∈A\A∗

∣∣∣E q∏
i=1

gjvi,j

∣∣∣)

≤ max
{

max
j∈A\A∗

∑
(ul,vl)∈Z̄u∗

l
,v∗

l
: l∈[q]

∣∣∣E q∏
i=1

f jui,j

∣∣∣d, max
j∈B\B∗

∑
(ul,vl)∈Z̄u∗

l
,v∗

l
: l∈[q]

∣∣∣E q∏
i=1

gjvi,j

∣∣∣d}

≤ max
{

max
j∈A\A∗

∑
u1,j ,...,uq,j∈V0

∣∣∣E q∏
i=1

f jui,j

∣∣∣d, max
j∈B\B∗

∑
v1,j ,...,vq,j∈V0

∣∣∣E q∏
i=1

gjvi,j

∣∣∣d}.
Denote the right hand side of the above inequality by U , then

E 〈f , CLg〉q ≤ U
∑

u∗1,...,u
∗
q

v∗1 ,...,v
∗
q

( ∏
j∈B∗

∣∣∣E q∏
i=1

f ju∗i,j

∣∣∣)( ∏
j∈A∗

∣∣∣E q∏
i=1

gjv∗i,j

∣∣∣),
≤ U

( ∏
j∈B∗

∑
u∗1,j ,...,u

∗
q,j∈V0

∣∣∣E q∏
i=1

f ju∗i,j

∣∣∣)( ∏
j∈A∗

∑
v∗1,j ,...,v

∗
q,j∈V0

∣∣∣E q∏
i=1

gjv∗i,j

∣∣∣)
≤ α|A∗|

q,1 β
|B∗|
q,1 max{αq,d, βq,d}.

The choice of A∗ and B∗ is still free, up to the constraint |A∗|+ |B∗| = r. The value
αq,e is typically a property of the S-box, and βq,e is a property of its inverse. Hence,
|A∗| = r/2 and |B∗| = r/2 is usually a reasonable choice. This results in the bound

E 〈f , CLg〉q ≤
√
αq,1βq,1

|A|+|B|−d max{αq,d, βq,d}.

Remark. Theorem 4.1 makes no assumptions on L other than that its linear branch
number equals d. If one additionally assumes that L is F2n/m-linear, (somewhat)
stronger bounds may be obtained by using ideas from the variance bounds of Canteaut
and Roué [32]. This will be left as future work. In any case, only relatively small
improvements are expected. For example, for q = 2, both bounds agree in several
important cases (such as for the AES). .

Broadly speaking, Theorem 4.1 shows that the qth moment can be larger (i.e.
more clustering can occur) if more cells are active. This is due to the first factor in
the upper bound: it is exponential in the difference between the number of active
cells and the branch number.

Also note that, although Theorem 4.1 does not apply to mixed moments1, it
depends (for q > 2) on mixed-moments of the vectors f i and gi, i = 1, . . . , q. This
provides a weak link with nonlinear approximations of the S-box.

1The result can be extended based on the same proof ingredients, but this makes the notation
heavier without yielding significant results. This may change if the analysis is extended to more
than two rounds(see Section 4.3).
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4.2.2 Application to Linear Approximations

This section applies Theorem 4.1 to the case of linear approximations over two rounds
of an SPN. For simplicity, assume that all S-boxes are equal: S1 = . . . = Sm = S.
That is, consider gi = CKCSδai and f i = CK′

[CS ]>δbi with K and K ′ independent
and uniformly distributed. Hence,

αq,e = max
a∈V0

∑
w1,...,wq∈V0

∣∣∣E q∏
i=1

(−1)w>
i KCSwi,a

∣∣∣e = max
a∈V0

∑
w1,...,wq∈V0
w1+···+wq=0

q∏
i=1

|CSwi,a|
e,

βq,e = max
b∈V0

∑
w1,...,wq∈V0

∣∣∣E q∏
i=1

(−1)w>
i K′

CSb,wi

∣∣∣e = max
b∈V0

∑
w1,...,wq∈V0
w1+···+wq=0

q∏
i=1

|CSb,wi
|e.

The cost of naively computing the values αq,e is bounded by O(|V0|q), hence feasible
only for q not too large. An easy optimization is to iterate only over all q-combinations
(with repetition) from elements of V0. Further improvements are possible if the
correlation only takes a small number of different values (as is often the case); this
will not discussed here since the naive approach suffices for small values of q.

The remainder of this section computes concrete values of the bound provided
by Theorem 4.1 for several block ciphers. First, consider ciphers with 4-bit S-boxes.
Table 4.3 gives concrete values for αq,e and βq,e for the Midori-64 S-box as well as
the alternative S-boxes discussed in Section 4.1.2. Linear layers with linear branch
numbers d = 4 or d = 5 (MDS) are considered.

Table 4.3: Values of αq,e = βq,e with q ∈ {2, 4, 6, 8} and e ∈ {1, 5} for the Midori-64
S-box and any of the alternative S-boxes from Section 4.1.2.

Midori-64 S-box S-box from Section 4.1.2

q αq,1 = βq,1 αq,4 = βq,4 αq,5 = βq,5 αq,1 = βq,1 αq,4 = βq,4 αq,5 = βq,5

2 1 2−6 2−8 1 2−6.978 2−8.994

4 5.5 2−10 2−14 5.5 2−12.869 2−16.966

6 46 2−14 2−20 46 2−18.679 2−24.917

8 410.5 2−18 2−26 410.5 2−24.408 2−32.845

As anticipated in Section 4.1.1, when all S-boxes are active, the result for the
Midori-64 S-box and d = 4 does not not improve upon the Chebyshev bound. The
choice of the S-boxes was discussed in Section 4.1.2. Another relevant question is
whether or not a linear layer with branch number d = 5 can result in stronger bounds.

Figure 4.1 shows the resulting tail bounds on the correlation for both choices of
the S-box and d = 5. With many active S-boxes, little or no improvement over the
Chebyshev bound is obtained. In fact, the situation is aggravated when the improved
variance bounds from Sections 4.1.1 and 4.1.2 are taken into account. For a small
number of active S-boxes, the bounds in Figure 4.1 are more interesting. Indeed,
one can conclude that such approximations can only exhibit strong clustering for
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a small fraction of keys. For example, Figure 4.1 rules out the existence of perfect
linear approximations with less than seven active S-boxes (when the S-boxes from
Section 4.1.2 are used). Faster decay of the tail can likely be obtained by taking into
account higher moments (Figure 4.1 relies only on q ≤ 8).

Tail bounds for the block ciphers AES [46] and SKINNY-128 [10] are shown in
Figure 4.2. Table 4.4 lists the corresponding values of αq,e and βq,e. Note that
presented bounds rely only on the second and forth moment; considering higher
moments can yield further improvements. The comparatively poor bounds for SKINNY
are expected, given its lightweight design choices. In particular, SKINNY uses a linear
layer with branch number d = 4 and an S-box with significantly lower nonlinearity
than AES. With respect to the number of active S-boxes, the same conclusion as
above applies.

Table 4.4: Values of αq,e = βq,e with q ∈ {2, 4} for SKINNY (e ∈ {1, 4}) and AES (e ∈
{1, 5}). For SKINNY, the reported values are such that

√
αq,1βq,1

N−d max{αq,4, βq,4}
is maximal – rather than the worst case values of αq,1 and αq,4 separately.

SKINNY AES

q αq,1 = βq,1 αq,4 = βq,4 αq,1 = βq,1 αq,5 = βq,5

2 1 2−6 1 2−26.478

4 2 2−10 27.021 2−49.171

4.2.3 Future Work related to the Moments Method

The examples in Section 4.2.2 show that Theorem 4.1 provides effective tail bounds on
the correlation of linear approximations with few active S-boxes, but not when many
S-boxes are active. It was shown in Section 4.1.1 that when all S-boxes are active, a
relatively straightforward combinatorial enumeration of linear trails can yield better
variance bounds than results based on the branch number (i.e. Theorem 4.1 with
q = 2). Hence, an interesting direction for future work is to investigate the extension
of this approach to higher moments. This may help to cover the remaining case, i.e.
linear approximations involving many active S-boxes.

One important limitation of Theorem 4.1, and even more so for the enumerative
approach from Section 4.1.1, is that it does not consider the relation between the linear
and nonlinear layer. This is problematic, because many weak key approximations
ultimately rely on structural properties that only become worrisome when the linear
and nonlinear layer are analyzed jointly. An alternative approach – not discussed in
this thesis – based on averaging-out key-dependencies might resolve this: for a weak
key class K with correlation at least c, one has

c ≤ 1

|K|
∑
K∈K
|〈f, CKg〉| = 〈f, ϕ̂Kg〉 with ϕK(K) =

{
sign〈f, CKg〉/|K| if K ∈ K
0 otherwise.

However, for this to work, assumptions must be made about the structure of K.
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Figure 4.1: Upper bounds on the tail of the correlation distribution for two-round
SPNs for branch number five. The S-box is either the Midori-64 S-box (top) or any
of the S-boxes discussed in Section 4.1.2 (bottom).
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Figure 4.2: Upper bounds on the tail of the correlation distribution for two-round
SKINNY (top) and AES (bottom). SKINNY uses a linear layer with branch number
d = 4; for AES, d = 5.
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4.3 Hypercontractivity
Ideally, one would like to extend the bounds discussed in the previous sections
beyond two rounds. This is nontrivial even when round keys may be assumed to
be independent. Indeed, whereas the variance can be shown not to increase with
additional rounds, higher moments can increase. This section discusses how the
notion of hypercontractivity [80, 86] can potentially be used to resolve this problem.
As of yet, the results in this section are conditional.

4.3.1 Definitions and Basic Results

In the following, denote the q-norm of a random variable X by ‖X‖q = q
√
E|X|q. One

can show that this indeed defines a norm, subject to the restriction that ‖X‖q <∞.
The latter condition is, of course, satisfied for all random variables in this chapter.

Definition 4.1 (Hypercontractivity [86]). Let 1 ≤ p ≤ q and ρ ∈ (0, 1) be real
numbers. A random variable X is (p, q, ρ)-hypercontractive iff for all a ∈ R,

‖1 + ρaX‖q ≤ ‖1 + aX‖p.

In the context of linear approximations, the goal will be to show that the
correlation c is hypercontractive with p = 2. The intuition is that, when ρ is not too
small, the distribution of the correlation is “reasonable” in the sense that its variance
will be a meaningful measure of dispersion. A few basic properties of hypercontractive
random variables are listed in Theorem 4.2.

Theorem 4.2 (Hypercontractivity properties [86]). Let X be a (p, q, ρ)-hypercontractive
random variable. Then

1. For all ρ′ ∈ (0, ρ], X is (p, q, ρ′)-hypercontractive.

2. The mean of X is zero.

3. For all a ∈ R, aX is (p, q, ρ)-hypercontractive.

4. ρ ≤ min {
√
(p− 1)/(q − 1), ‖X‖p/‖X‖q}.

Hypercontractivity is closely related to the moments method. Indeed, by
Theorem 4.2, a (2, q, ρ)-hypercontractive random variable X satisfies ‖X‖q ≤
‖X‖2/ρ. Conversely, one can show that any symmetric random variable is (2, q, ρ)-
hypercontractive with 1/ρ = ‖X‖q

√
q − 1 [86, §10.2, Theorem 12].

It can be shown that optimal (2, q, ρ)-hypercontractivity, i.e. ρ = 1/
√
q − 1,

is achieved for Rademacher and Gaussian random variables [86]. Theorem 4.3
states that the correlation of any nonlinear approximation over a uniform random
permutation is also optimally hypercontractive.

Theorem 4.3. Let F be a uniform random permutation on Fn2 . The correlation of
any nonlinear expression of the form f(x) + g(F (x)), with f and g balanced Boolean
functions, is a (2, q, 1/

√
q − 1)-hypercontractive random variable for all q ≥ 2.

Proof. A proof can be found in Appendix A.1.
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4.3.2 Towards Upper Bounds for Multiple Rounds

Suppose that one has established (2, q, ρ)-hypercontractivity for the correlation of
linear approximations over round functions F 1 and F 2 depending on independent
random keys. What can then be concluded about linear approximations over F 2◦F 1?
Theorem 4.4 provides a preliminary result in this direction. Note that suppX refers
to the set of values that a random variable X can take with nonzero probability.

Theorem 4.4. Let F 1,F 2 be independent random functions with corresponding
random correlation matrices CF 1 and CF 2. Let a, b ∈ Fn2 . If

1. for all f> ∈ suppCF 2
χb, ·, the random variable 〈f, CF 1

·, χa
〉 is (2, q, ρ1)-hypercontractive,

2. for all g> ∈ suppCF 1
·, χa

, the random variable 〈CF 2
·, χb

, g〉 is (2, q, ρ2)-hypercontractive,

then CF 2◦F 1
χb, χa

is (2, q, ρ1ρ2)-hypercontractive.

Proof. The proof relies on a significant amount of background material, so it has
been moved to Appendix A.2.

Theorem 4.4 makes minimal assumptions about F 1 and F 2, so it is not surprising
that the hypercontractivity parameter ρ decreases. Nevertheless, one may still
obtain stronger tail bounds if it can be shown e.g. that the variance decreases. One
should consequently think of Theorem 4.4 as a result that shows to what extend
hypercontractivity can deteriorate when composing two non-ideal functions.

The main difficulty with Theorem 4.4 is that it requires knowledge about (hyper-
contractivity of) the correlation of some nonlinear approximations over F 1 and F 2.
The moment bound provided by Theorem 4.1 is not sufficiently general to provide
this information. Obtaining the relevant extensions is left as future work.

4.4 Conclusion
In this chapter, advances were made in the search for upper bounds on the corre-
lation of linear approximations. Providing such bounds is equivalent to ruling out
clustering of linear trails. In Section 4.1, it was shown that the variance bounds from
Section 2.3.2 can be used to obtain weak key bounds through Chebyshev’s inequality.
It was illustrated, using Midori-64, that the Chebyshev bound is sometimes optimal.

In Section 4.2, the variance approach was generalized by considering higher
moments. This resulted in Theorem 4.1, which provides an upper bound on the
even moments of the correlation of rank-one approximations over a linear layer with
a given linear branch number. The applications of Theorem 4.1 in Section 4.2.2
illustrated that, for some ciphers such as the AES, strong clustering is not possible
when few S-boxes are active. However, it was noted that Theorem 4.1 generally
does not improve upon Chebyshev’s inequality when all S-boxes are active. Some
suggestions were made to address this in future work.

Finally, Section 4.3 discussed preliminary results on using hypercontractivity to
extend the moments method from Section 4.2 beyond two rounds. Theorem 4.3 states
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that correlations of (non)linear approximations over uniform random permutations
are indeed optimally hypercontractive. The main result, Theorem 4.4, shows to
what extend hypercontractivity may deteriorate when composing non-ideal functions.
Future work is necessary to investigate the assumptions of this result.
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Chapter 5

Conclusion

The object of this thesis was the reexamination and generalization of the theory
of linear cryptanalysis. This goal was motivated by the growing importance of
lightweight and permutation-based cryptography, as is demonstrated by the ongoing
NIST lightweight cryptography standardization project [8]. The design choices
resulting therefrom have encouraged the development of block cipher invariants [14,
51, 71, 94] and have led to renewed interest in old ideas such as the pursuit of
nonlinear approximations [9, 52, 69]. These attacks and others are entangled with
linear cryptanalysis in the weak model and, as shown in this thesis, can be described
using a single theoretical framework. This framework is rooted in the author’s work
on block cipher invariants [14] from ASIACRYPT 2018. In addition, this thesis
considers the problem of proving security against linear cryptanalysis in the weak
key setting – thereby extending variance bounds.

After given a substantive overview of the state of the art in Chapter 2, a
“geometric approach” to linear cryptanalysis and its generalizations was developed
in Chapter 3. The essence of this approach is to describe (multiple) linear and
nonlinear approximations by pairs of low-dimensional subspaces of CG, where G is
a finite abelian group (usually Fn2 ). Such vector spaces can be propagated through
an iterative function by means of successive orthogonal projections on intermediate
vector spaces. This process generalizes the classical piling-up principle. The theory
developed in Sections 3.1 to 3.3 was then used to resolve an open problem posed by
Beierle et al. [9] at FSE 2019. Further applications were discussed in Section 3.5.

The issue of correlation upper bounds in the weak key setting was taken up in
Chapter 4. Specifically, the study of probabilistic upper bounds on the correlation
of linear approximations over two rounds of SPNs was initiated. The limitations of
variance bounds in obtaining such results were discussed in Section 4.1. Improved
bounds, based on higher moments of the correlation, were derived in Section 4.2
and applied to several examples including the AES. Finally, a prospective approach
to the extension of these results beyond two rounds was developed in Section 4.3.
Future work should focus on obtaining stronger results for approximations with many
active S-boxes. In addition, as suggested by the conditional results in Section 4.3,
correlation bounds for some nonlinear approximations should be derived.
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Appendix A

Hypercontractivity

This appendix contains the proofs of Theorem 4.3 and Theorem 4.4. Some additional
background information on hypercontractivity is also included.

A.1 Proof of Theorem 4.3

Lemma A.1. Let F be a uniform random permutation and let X1, . . . ,X2n−1 be
a random sample without replacement from the multiset {0(2n−1), 1(2

n−1)}. The
correlation C(f, g ◦ F ) of an approximation f(x) + g(F (x)) with f and g balanced
Boolean functions satisfies

C(f, g ◦ F ) =
1

2n−2

(
2n−1∑
k=1

Xk

)
− 1.

Proof. By the definition of the correlation coefficient C(f, g ◦ F ):

C(f, g ◦ F ) =
1

2n

∑
x∈Fn

2

(−1)f(x)+g(F (x))

=
1

2n

∑
x∈Fn

2

[4g(F (x))f(x)− 2g(F (x))− 2f(x) + 1]

=
1

2n−2

( ∑
x∈Fn

2
f(x)=1

g(F (x))

)
− 1.

The result follows by the balancedness of f and g.

The proof of Theorem 4.3 further requires the following lemma, which is due to
Wassily Hoeffding [56].

Lemma A.2 (Hoeffding [56]). Let P ⊂ R be a finite population (multiset). Let
X1,X2, . . . ,XN be a random sample without replacement from P . Likewise, let
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Y 1,Y 2, . . . ,Y N be a random sample with replacement from P . Then for any
continuous convex function f : R→ R,

Ef

(
N∑
i=1

Xi

)
≤ Ef

(
N∑
i=1

Y i

)
.

Proof. A proof may be found in Hoeffding’s work [56].

Proof of Theorem 4.3. Let ρ = 1/
√
q − 1 and a ∈ R. By Lemma A.1, we have

a+ ρC(f, g ◦ F ) = a+ ρ

 1

2n−2

(
2n−1∑
k=1

Xk

)
− 1

 ,
where X1, . . . ,X2n−1 is a random sample without replacement from the multiset
{0(2n−1), 1(2

n−1)}. Since the real function x 7→ |x|q is continuous and convex for q ≥ 1,
we have

‖a+ ρC(f, g ◦ F )‖q ≤

∥∥∥∥∥∥a+ ρ

 1

2n−2

(
2n−1∑
k=1

Y k

)
− 1

∥∥∥∥∥∥
q

,

where Y 1, . . . ,Y 2n−1 is a random sample with replacement from the multiset
{0(2n−1), 1(2

n−1)}. The right hand side above can be rewritten as

a+ ρ

 1

2n−2

(
2n−1∑
k=1

Y k

)
− 1

 = a+ ρ
1

2n−2

(
2n−1∑
k=1

Y k − 1/2

)

= a+ ρ
1

2n−1

(
2n−1∑
k=1

(−1)Y k

)
.

Since the Rademacher random variables (−1)Y k are mutually independent and
(2, q, ρ)-hypercontractive [86, §10.1], so is their sum (see Section A.2). It follows that

‖a+ ρC(f, g ◦ F )‖q ≤ ‖a+ C(f, g ◦ F )‖2.

This establishes (2, q, ρ)-hypercontractivity.

A.2 Proof of Theorem 4.4
The proof relies on multilinear polynomials in orthogonal ensembles. Note that many
of the results below appear in the work of Mossel, O’Donnell and Oleszkiewicz [80].
The proof of Theorem 4.4 does not require the full generality of the background
material presented here. Nevertheless, the general theory is instructive and enables
other results that are not discussed in this thesis.

Definition A.1 (Sequence of orthonormal ensembles [80]). An orthonormal ensemble
is a set X i = {Xi,j}j∈[m] of orthonormal random variables with Xi,1 = 1. A tuple
X = (X 1, . . . ,X n) with X i an orthonormal ensemble, will be called a sequence of
ensembles. X is called independent if the ensembles X i are mutually independent.
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Note that an orthogonal ensemble can trivially be converted into an orthonormal
ensemble, and consequently the results that are listed below carry over to the non-
normalized case. In order to define hypercontractivity of sequences of ensembles, it
is useful to introduce the following notation for multilinear polynomials.

Definition A.2 (Multilinear polynomial [80]). A multilinear polynomial Q over a
doubly-indexed set X = {Xi,j}i∈[n],j∈[m] of variables is a polynomial of the form

Q(X ) =
∑

σ∈[m]n

cσ X σ,

with X σ =
∏n
i=1Xi,σi and cσ ∈ R. The degree of σ is defined as |σ| = |{i ∈ [n] | σi 6=

1}|.

To generalize the notion of hypercontractivity, the so-called noise operator Tρ is
defined. Below, a basic (but somewhat uninformative) definition is given.

Definition A.3 (Noise operator [80]). For any ρ ∈ [0, 1], the operator Tρ is defined
by its action on the set of multilinear polynomials (Definition A.2):

(TρQ)(X ) =
∑

σ∈[m]n

ρ|σ| cσ X σ.

Definition A.4 (Hypercontractivity for sequences of ensembles [80]). Let 1 ≤ p ≤ q
and ρ ∈ (0, 1) be real numbers. A sequence X of orthonormal ensembles is (p, q, ρ)-
hypercontractive iff for all multilinear polynomials in X ,

‖(TρQ)(X )‖q ≤ ‖Q(X )‖p.

Note that Definition 4.1 corresponds to the special case of a sequence containing
one ensemble, which in turn contains only two random variables (one of which is
constant). Two essential properties of hypercontractive sequences of orthonormal
ensembles will now be stated.

Theorem A.1 (Union of sequences [80]). Let X = (X 1, . . . ,X n1) and Y =
(Y1, . . . ,Yn2) be independent sequences of orthonormal ensembles. If X and Y
are (p, q, ρ)-hypercontractive, then X ∪Y = (X 1, . . . ,X n1 ,Y1, . . . ,Yn2) is (p, q, ρ)-
hypercontractive.

Theorem A.2 (Moments of multilinear polynomials [80]). Let X be a (2, q, ρ)-
hypercontractive sequence of orthonormal ensembles, then for any multilinear polyno-
mial Q of degree d,

‖Q(X )‖q ≤ ρ−d ‖Q(X )‖2.

Theorem A.1 results in a useful necessary condition for a sequence X to be
hypercontractive. Specifically, X is (p, q, ρ)-hypercontractive if

– The orthonormal ensembles X 1, . . . ,X n in X are mutually independent.
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– For each orthonormal ensemble X i, all linear combinations of the random
variables in X i are (p, q, ρ)-hypercontractive.

A variation on Theorem A.2 shows that a low-degree polynomial without constant
term of a (2, q, ρ)-hypercontractive sequence yields a (2, q, ρd)-hypercontractive ran-
dom variable. Since this variant is not mentioned in [80,86], it is stated in Lemma A.3
below together with a proof.

Lemma A.3. Let X be a (2, q, ρ)-hypercontractive sequence of orthogonal ensembles.
Then for any multilinear polynomial Q of degree d without constant term, the random
variable Q(X ) is (2, q, ρd)-hypercontractive.

Proof. The proof is very similar to that of Theorem A.2, see Appendix A in [80].
Let Q(X ) =

∑d
i=1Q

=i(X ) where Q=i is a homogeneous multilinear polynomial of
degree i. For any a, we have

‖a+ ρdQ(X )‖q = ‖Tρ (a+
d∑
i=1

ρd−iQ=i(X ))‖q

≤ ‖a+
d∑
i=1

ρd−iQ=i(X )‖2

=

(
a2 +

d∑
i=1

ρ2(d−i) ‖Q=i(X )‖22

)1/2

≤

(
a2 +

d∑
i=1

‖Q=i(X )‖22

)1/2

= ‖a+
d∑
i=1

Q=i(X )‖2.

The third and fifth steps follow from the orthogonality of Q=i(X ) and Q=j(X ) when
i 6= j.

Before stating the proof of Theorem 4.4, a useful lemma (a simple consequence
of Theorem A.2) will be derived. The proof of the lemma is similar to that of
Theorem A.1, which can be found in Appendix A of [80].

Lemma A.4. Let X and Y be independent sequences of orthonormal ensembles
which are respectively (2, q, ρ1)- and (2, q, ρ2)-hypercontractive. Let Q be a multilinear
polynomial in X ∪Y. If Q is of degree d1 in X and of degree d2 in Y, then

‖Q(X ∪Y)‖q ≤ ρ−d11 ρ−d22 ‖Q(X ∪Y)‖2.

Furthermore, when Q has no constant term, Q(X∪Y) is (2, q, ρd11 ρ
d2
2 )-hypercontractive.
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Proof. By applying Theorem A.2, one obtains

‖Q(X ∪Y)‖q =
∥∥‖Q(X ∪Y)‖Lq(X )

∥∥
Lq(Y)

≤ ρ−d11

∥∥‖Q(X ∪Y)‖L2(X )

∥∥
Lq(Y)

.

As a consequence of Minkowski’s integral inequality, this can be upper bounded as

‖Q(X ∪Y)‖q ≤ ρ−d11

∥∥‖Q(X ∪Y)‖Lq(Y)

∥∥
L2(X )

.

Another application of Theorem A.2 completes the proof. The claim about the
hypercontractivity of Q(X ∪Y) when Q has no constant terms can be derived from
Lemma A.3 using the same approach.

Proof of Theorem 4.4. Note that we have

CF 2◦F 1
χb,χa

=
∑
u∈Fn

2

CF 2
χb,χu

CF 1
χu,χa

. (A.1)

Let X = {CF 1
χu,χa

| u ∈ Fn2} ∪ {1} and Y = {CF 2
χb,χu

| u ∈ Fn2} ∪ {1}. By the
assumptions, X is a (2, q, ρ1)-hypercontractive orthogonal ensemble and Y is (2, q, ρ2)-
hypercontractive. Note that (A.1) is a multilinear polynomial in X ∪ Y without
a constant term. Hence, by Lemma A.4, the random variable (A.1) is (2, q, ρ1ρ2)-
hypercontractive.
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Poster

This appendix includes the poster presented at the “masterproefbeurs” in April 2019.
Its content is limited to Chapter 3.
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Korte inhoud:
De grondslagen van lineaire cryptanalyse worden herbekeken en veralgemeend in het
licht van recente ontwikkelingen in de symmetrische-sleutel cryptografie. Afwegingen
bij het ontwerp van lichtgewicht cryptografische primitieven hebben geleid tot nieuwe
aanvallen zoals blokcijfer invarianten, en hebben de interesse voor klassieke problemen
zoals het gebruik van niet-lineaire benaderingen in de cryptanalyse heropgewekt. Deze
ontwikkelingen zijn intrinsiek verbonden met de beschrijving van lineaire cryptanalyse
in het zwakke sleutel model. Bovendien wint permutatie-gebaseerde cryptografie –
die gebruikmaakt van primitieven zonder sleutel – aan belang.

Als reactie op deze dwingende tendensen ontwikkelt de voorliggende thesis een
doortastende veralgemening van lineaire cryptanalyse. De voorgestelde “meetkundige
aanpak” laat een uniforme behandeling van een groot aantal varianten van de klassieke
lineaire aanval toe en is geschikt voor gebruik in het sleutel-loze en zwakke sleutel
model. Bovendien maakt het nieuwe raamwerk bijkomende uitbreidingen van lineaire
cryptanalyse mogelijk en leidt het tot de oplossing van problemen gerelateerd aan het
gebruik van niet-lineaire benaderingen. Ten slotte worden pogingen tot het bewijzen
van veiligheid ten aanzien van lineaire cryptanalyse heroverwogen in de context van
het zwakke sleutel model.
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