A geometric approach to symmetric-key cryptanalysis

Tim Beyne

tim@cryptanalysis.info

KU Leuven

October 3, 2024

Overview

- Assign a weight to every possible input in $X = \{a, b, c, d, e\}$
- Compute weighted combinations of the outputs in $Y = \{1, 2, 3, 4, 5\}$

- Assign a weight to every possible input in $X = \{a, b, c, d, e\}$
- Compute weighted combinations of the outputs in $Y = \{1, 2, 3, 4, 5\}$

Finite sets and functions

Coseparable cocommutative coalgebras

Cryptanalytic properties

• Cryptanalytic property of a function $F: X \rightarrow Y$ consists of

- A subspace $U \subset k[X]$
- A subspace $V \subset k^Y$
- Cryptanalysis is about evaluating properties:

estimating
$$v(T^{\mathsf{F}}u)$$
 for $u \in U$ and $v \in V$

▶ These data are equivalent to a map $U \to k[Y]/V^0$ or dually $V \to k^X/U^0$

Pushforward operator

• Evaluating $v(T^{F}u)$ directly is not feasible for real ciphers

Iterated structure of F:

$$T^{\mathsf{F}} = T^{\mathsf{F}_r} \cdots T^{\mathsf{F}_2} T^{\mathsf{F}_1}$$

Change-of-basis

Change-of-basis

Relative pushforward operators

▶ With the right change of basis, this makes it easier to estimate $v(T^F u) = \hat{v}(B^F \hat{u})$

Relative pushforward operators

With the right change of basis, this makes it easier to estimate v(T^Fu) = v(B^Fû)
 When u = b_{β1} and v = b^{βr+1} are basis functions:

Linear cryptanalysis

Fourier transformation

Fourier transformation

Fourier transformation diagonalizes translation

▶ Fourier transformation exists for any finite Abelian group (e.g. $\mathbb{Z}/N\mathbb{Z}$)

Correlation matrices C^{F_i}
 Expanding the matrix product gives linear trails

$$C_{\chi_{r+1},\chi_1}^{\mathsf{F}} = \sum_{\chi_2,...,\chi_r} \prod_{i=1}^r \chi_{i+1}(k_i) C_{\chi_{i+1},\chi_i}^{\mathsf{F}_i}$$

 $C^{\mathsf{F}}U\perp V$

- Zero-correlation linear approximations
- ► Multidimensional ~

 $C^{\mathsf{F}}U\subseteq V$

- Saturation attacks
- Invariant subspaces
- Nonlinear invariants

 $\langle V, U \rangle_{\mathsf{F}}$

 $C^{\mathsf{F}}U$

- (Non)linear approximations
- \blacktriangleright Multiple \sim
- ► Multidimensional ~
- Partitioning

2 + 3 + 4 + 4 = odd

3 + 3 + 4 + 1 = odd

Invariants

	u	=	u
L	L J		LJ

invariants are eigenvectors

Invariants

invariants are eigenvectors

https://eprint.iacr.org/2018/763

Differential cryptanalysis

Pairs of values

Assign weights (complex numbers) to all pairs of values

Pairs of values

Assign weights (complex numbers) to all pairs of values

Geometric approach to differential cryptanalysis

• Quasidifferential basis functions $(x, y) \mapsto \chi(x)\delta_a(y - x)$

Geometric approach to differential cryptanalysis Quasidifferential basis functions $(x, y) \mapsto \chi(x)\delta_a(y - x)$ Constant-difference pairs

$$D^{\mathsf{F}} = \underline{D}^{k_r} D^{\mathsf{F}_r} \cdots \underline{D}^{k_2} D^{\mathsf{F}_2} \underline{D}^{k_1} D^{\mathsf{F}_1}$$

https://eprint.iacr.org/2022/837 (with V. Rijmen)

Independence assumptions

$$\mathsf{probability} = \sum_{\Delta_2, \dots, \Delta_r} p_{\Delta_1 \to \Delta_2} \times p_{\Delta_2 \to \Delta_3} \times \dots \times p_{\Delta_r \to \Delta_{r+1}}$$

Independence assumptions

 Better Steady than Speedy: Full Break of SPEEDY-7-192 (Eurocrypt 2023) Boura, David, Boissier, Naya-Plasencia

▶ Four-round core-characteristic with claimed probability 2⁻⁴²

- Better Steady than Speedy: Full Break of SPEEDY-7-192 (Eurocrypt 2023) Boura, David, Boissier, Naya-Plasencia
- Four-round core-characteristic with claimed probability 2⁻⁴²
- Inspection of quasidifferential trails shows that the probability is actually

$$2^{-42} - 2^{-42} = 0$$

Many other invalid attacks on SPEEDY in other papers

https://eprint.iacr.org/2024/262 (with A. Neyt)

▶ First quasidifferential trail for SPEEDY: correlation 2^{-42}

▶ Second quasidifferential trail for SPEEDY: correlation -2^{-42}

Quasidifferential trails Example: 7-round Speck-64

- Ankele and Kölbl (SAC 2018)
- Differential (4004092 104204, 8080a080 8481a4a) for 7-round Speck-64
- Dominant characteristic estimated probability 2⁻²¹

Quasidifferential trails Example: 7-round Speck-64

Probability 2⁻²¹? 8080a080 8481a4a 4004092 1042004 Number of keys Number of right pairs

10000 keys, 2³⁰ pairs per key

Quasidifferential trails

Example: 7-round Speck-64

Quasidifferential trails over the first two rounds

Quasidifferential trails

Example: 7-round Speck-64

Quasidifferential trails over the first two rounds

 $2^{-9} + (-1)^{k_{1,28}+k_{1,29}} 2^{-11}$

Differential cryptanalysis Example: 7-round Speck-64

¹⁰⁰⁰⁰ keys, 2³⁰ pairs per key

Integral cryptanalysis

The Fourier transformation simplifies additions What about multiplications?

The Fourier transformation simplifies additions What about multiplications?

The Fourier transformation simplifies additions What about multiplications?

- Use weights in the *p*-adic numbers \mathbb{Q}_p
- 'Multiplicative' Fourier transformation that still preserves distances
 ... for some definiton of distance

p-adic numbers

 \triangleright \mathbb{Q}_{p} contains the integers, but with a different distance:

distance between 7 and $1 = |7 - 1|_2 = |6|_2 = 1/2$ distance between 9 and $1 = |9 - 1|_2 = |8|_2 = 1/8$

$$F_{1} \bullet F_{2} \cdots \bullet F_{r} \bullet F$$

Expanding the matrix product gives trails

$$A_{\chi_{r+1},\chi_1}^{\mathsf{F}} = \sum_{\chi_2,\dots,\chi_r} \prod_{i=1}^r A_{\chi_{i+1},\chi_i}^{\mathsf{F}_i}$$

https://eprint.iacr.org/2024/722 (with M. Verbauwhede)

Ultrametric integral cryptanalysis

► For
$$\mathbb{F}_q^n$$
 with $\mu : x \mapsto \tau(x^u)$ and $\lambda : x \mapsto \tau(x^v)$:
 $A_{\lambda,\mu}^{\mathsf{F}} \equiv \text{coefficient of } x^u$ in the algebraic normal form of $F^v \pmod{p}$

au is the Teichmüller lift – nothing special for $q \in \{2,3\}$

Ultrametric integral cryptanalysis

• Ordinary integral cryptanalysis: take p = 2 and N = 1

Ultrametric integral cryptanalysis Example: 4-round Present

Boura and Canteaut (Crypto 2016)

Ultrametric integral cryptanalysis Example: 4-round Present

Boura and Canteaut (Crypto 2016)

Ultrametric integral cryptanalysis Example from mathematics: planar functions

• A function
$$F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$$
 is called planar if

$$x \mapsto \mathsf{F}(x + \alpha) - \mathsf{F}(x)$$

is a permutation for all α in $\mathbb{F}_{p^n}^{\times}$

• Dembowski-Ostrom conjecture: if F is planar, then deg_p F = 2 (for p > 3)

Ultrametric integral cryptanalysis Example from mathematics: planar functions

• A function
$$F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$$
 is called planar if

$$x \mapsto \mathsf{F}(x + \alpha) - \mathsf{F}(x)$$

is a permutation for all α in $\mathbb{F}_{p^n}^{\times}$

• Dembowski-Ostrom conjecture: if F is planar, then deg_p F = 2 (for p > 3)

• <u>Theorem</u> (with C. Beierle): If F is planar, then for all nonzero G : $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$,

$$\deg_p \mathsf{G} \circ \mathsf{F} - \deg_p \mathsf{G} \leq \frac{n(p-1)}{2}$$

• We show this implies the conjecture for $F(x) = x^d$ and $n = 2^k$ and $p \ge 7$

Ultrametric integral cryptanalysis Example from mathematics: planar functions

▶ Planarity is additive: $\left|C_{\chi,\psi}^{\mathsf{F}}\right| = 1/\sqrt{p^n}$ for nontrivial χ

• Degree is multiplicative: $A_{\mu,\lambda}^{\mathsf{F}} \pmod{p}$ contains the algebraic normal form of F

 \triangleright C^F and A^F represent the same linear map

$$C^{\mathsf{F}} = (\mathscr{F}\mathscr{U}^{-1})A^{\mathsf{F}}(\mathscr{F}\mathscr{U}^{-1})^{-1}$$

p-adic absolute value

$$\left|\mathsf{A}_{\mu,\lambda}^{\mathsf{F}}\right|_{p} \leq p^{\frac{\deg \mu - \deg \lambda}{p-1}} \max_{\chi,\psi \neq 1} \underbrace{\left|C_{\chi,\psi}^{\mathsf{F}}\right|_{p}}_{\sqrt{p^{n}}}$$

https://arxiv.org/abs/2407.04570 (with C. Beierle)

Conclusions

https://tim.cryptanalysis.info/

tim@cryptanalysis.info