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Commutative diagram cryptanalysis

» Wagner, FSE 2004
» Based on commutative diagrams (cf. categories)

X — X s X
ﬂl p1 lfz P2 lf3
Y1 - Y, Y3

» Every such diagram corresponds to a ‘local property’ of F

P> “Local properties can be pieced together to obtain global properties by exploiting
the compositional behavior of commutative diagrams”



Commutative diagram cryptanalysis
» How to define ‘probabilistic diagrams'? (i.e. what category)

» Probabilistic (commutative) diagrams are not the right notion

» Example: correlation of linear trail is c;cp (not pip2)

» Independence assumption is not good either,
but the real issue is the definition



Commutative diagram cryptanalysis
> Wagner's proposal: stochastic commutative diagrams
F7 —F . F2

R

Fp —— Iy

ENERN N
BlW =



Commutative diagram cryptanalysis
> Wagner's proposal: stochastic commutative diagrams
F7 —F+ F2

o [} 1] Jos

Fr —— I,

ENR NI
BlW =

» Even if we could define a category where this is a diagram,
stochastic commutative diagram is an oxymoron

> Many techniques cannot be described in this way, e.g.
— Integral cryptanalysis

— No distinction between multiple and multidimensional linear

Probability theory is the wrong framework for cryptanalysis




Motivation for the geometric approach

» Can we at least find a suitable definition for our diagrams?

A\ Even if we have this, we should not expect them to commute

> Mathematically: what category should we work in?
— Should contain FinSet as a subcategory

— Must be flexible enough (more flexible than probability theory)

> Strategy of the geometric approach:
Find a category C equivalent to FinSet, then enlarge C



Motivation for the geometric approach

Functors F and F*
» Vector space k[X] of formal k-linear combinations of X

u= Z Uy X
xeX
» A function F : X — Y has a pushforward TF : k[X] — k[Y]
Thu = Z uy F(x)
xeX

» Covariant functor F : FinSet — % C k-FinVect

X2 k[X2]

F/' \Fi F 7—F/v NFE

X Fols | x, K[X] LACR S Y




Motivation for the geometric approach
Functors F and F*

> Vector space kX of k-valued functions on X
vix e v(x)

> A function F: X — Y has a pullback TF" : kY — kX
TFv=voF

» Contravariant functor F* : FinSet — 2 C k-FinVect

N N

F20F1




Motivation for the geometric approach
Functors F and F*

» Duality between F : FinSet — ¢ and F* : FinSet®® — &

» Elements of kX are also linear functions on k[X]:

v(u) = Z uy v(x)

xeX

» So we can think of kX as the dual vector space of k[X]

» What are the categories ¥ and 2 ~ €°P?



Motivation for the geometric approach
Products and coproducts on kX and k[X]
» kX is an algebra with product V : kX @ kX — kX

(V(v @ w))(x) = v(x)w(x)

A®3 ideV A®2 A id®n A®2
V®idl lv n®idl id lv

A®2 Y A A22 Y A



Motivation for the geometric approach
Products and coproducts on kX and k[X]
> kX is an algebra with product V : kX @ kX — kX

(V(v ) (x) = v(x)w(x)
» k[X] is a coalgebra with coproduct A : k[X] — k[X] ® k[X]

Au) = ZUXX(X)X

xeX
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Motivation for the geometric approach
Products and coproducts on kX and k[X]
> kX is an algebra with product V : kX @ kX — kX

(V(v ) (x) = v(x)w(x)
» k[X] is a coalgebra with coproduct A : k[X] — k[X] ® k[X]

Au) = ZUXX(X)X

xeX
A@idT TA 5®idT N TA
AR2 LB A AR2 B A

» f is a morphism of algebrasif Vo (f®@f)=foV
» f is a morphism of coalgebras if (f ® f)oA=Aof



Motivation for the geometric approach
Products and coproducts on kX and k[X]

» An algebra is separable if there exists a compatible coproduct

» A coalgebra is coseparable if there exists a compatible product

VoA=id (i[de@V)o(A®id)=AoV =(V®id)o (id® A)

o
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Motivation for the geometric approach
Products and coproducts on kX and k[X]

» An algebra is separable if there exists a compatible coproduct

» A coalgebra is coseparable if there exists a compatible product

VoA=id (i[de@V)o(A®id)=AoV =(V®id)o (id® A)

o

» Product and coproduct on kX and k[X] correspond to copy

— Product on kX is V = T<opy’

— Coproduct on k[X] is A = TP
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Motivation for the geometric approach
Functors F and F* as equivalences of categories

> If k is algebraically closed, then

finite dimensional
coseparable
cocommutative
k-coalgebras

[

FinSet k-coSepAlg

separable
FinSet°? =~ commutative k-SepAlg
k-algebras

» This has many consequences

11



Geometric approach
Enlarging the category

» Forgetting the (co)algebra structure leads to more flexibility

> k-FinVect as an indirect but formal setting for cryptanalysis

F Hom(-, k)
FinSet ——— k-coSepAlg ——— k-SepAlg
‘Approximate’ F Hom(-, k)

FinSet k-FinVect ——— k-FinVect®?

» ‘Probability theory’ is somewhere half-way (when k =R...)
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Geometric approach
Cryptanalytic properties

» Cryptanalytic property for a function F : X — Y consists of

— A subspace U C k[X]

— A subspace V C kY

» Cryptanalysis is about evaluating properties:

estimating v( T u) for u e U and v € V

13



Geometric approach
Cryptanalytic properties
» Diagrams that commute but don't compose (properties)
KX] —— k(Y] kY T kX
‘L O i or dually I O ;
U k[Y]/ VO V—— KX/U°
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Geometric approach
Cryptanalytic properties

» Diagrams that commute but don't compose (properties)

K[X] kY] kY T X
‘L O i or dually I O ;
U k[Y]/ VO V—— KX/U°

» Diagrams that compose but don't commute (approximations)

KIX] — T K[Y] kY T X
> I ) I or dually I o I
U V2 V—— U0

» Decomposition k¥ = @, Vi < k[Y] =@, V°
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Geometric approach
Choice of basis

Linear cryptanalysis

Differential cryptanalysis

Integral cryptanalysis

k=C
X
Commutative group

X—=X+cC

k=C
X x X
Commutative group

Basis diagonalizes monoid
action (for all ¢ in X):

(x,y) = (x+c,y+c)

k=C,p
X
Commutative inverse
monoid

X = X
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Commutation property of Midori-64

» ‘Commutative diagram cryptanalysis made practical’
Baudrin et al.

» J(x) = (y(x1),...,7(x16)) commutes with round function
x+f if5'x=0
v(x) =
x+a else

> As a commutative diagram:

64 F 64
F3" —— I3

1 0 kb

64 F 64
F3" —— I3

@ Unusual diagram, due to size of F$*
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Commutation property of Midori-64
Alternative description

» Michiel Verbauwhede independently found this property

» Invariant set of pairs S1°

S= {(X,’Y(X)) | x € Fg}

kFg“ xFg*

» Geometric approach: subspace of spanned by

S50 = (55)%1°

» Sparse description in the quasidifferential basis?

1 1
f:550&(5f+5a)+§65®(5f—5a)

Lgua(x,y) = (=1)* %6a(x + )
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Commutation property of Midori-64
Probabilistic variant

» Probabilistic property based on the invariant

| | | -
Y Y e )
| w| |
N Y B
| | |

| m| |

| | w| =

Hh| Th| Th| TH

18



Commutation property of Midori-64

Probabilistic variant

» Probabilistic property based on the invariant

f 50,0

f

90,0 90,0

90,0

f |doo

f

90,0 90,0

90,0

> Modify ShiftRows and round constants: Vert3g

» 2120 weak keys instead of

296

1/16
i

f

00,0

90,0

f

0,0

0,0

» Prediction based on multiplying probabilities: 274"
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Commutation property of Vert%R

» Estimate of probability 27*" does not match reality

» For example for r = 3 and sample size of 2'® pairs:

# keys
N
()]

T T T T

0 25 50 75 100 125 150

# solutions

P This is because the analysis ignores important trails

175
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Commutation property of Vert%R
MCoSRoSCoMCoAK,o0SCoSRoMC

» Second approximation for MixColumns with correlation 1/16

f f g g

> g is not the indicator function of a set but g = (ds X 0ps) - £

1 1
gziéoﬁ(df —5a)+§55&(6f+5a)

» J5 is an invariant for two rounds of Midori-64!
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Commutation property of Vert%R
MCoSRoSCoMCoAK,o0SCoSRoMC

> g is not an invariant of S, but D5g = ((C%05) 6F4) - f

h = D%¢ = (514 —011) W10+ =

» Still correlation one for the S-box layer

g g

(510 + d15) K 015

h

h

h

h
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Commutation property of Vert%R
MCoSRoSCoMCoAK,o0SCoSRoMC

» For k a 4-bit constant such that 5Tk =0
D<hy = (—1)°" L > (0 = o) B 6 = (—1) 1"* (00 + 0) B )
» If 1Tk =1, then D¥hy = £hy (cf. invariant)

» If 1Tk =0, then D¥h; = +h,
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Commutation property of Vert%R

MCoSRoSCoMCoAK,o0SCoSRoMC

h h1
h h
ho hy
hy h1

ho ho
ho hy
h1 ho
h hy

1/16
-

» Must have 1Tk0 = 1Tk2 and 1Tk8 = 1Tk10

h1

h
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Commutation property of Vert%R
MCoSRoSCoMCoAK,o0SCoSRoMC

h

h
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Commutation property of Vert%R

» Sum of these trails gives the following probability estimate

1

2? . <1 + (*1)bT(k0+k2+k8+k10)50(1Tko + 1Tk2)50(1Tk8 + 1Tk10))

# keys
N
()]

0 25 50 75 100 125 150 175

# solutions

» There are some additional trails

» More trails necessary for r > 4
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Conclusions

» Geometric approach ~ ‘forgetting’ the (co)algebra structure of finite sets

> Wagner's goal of unification can be achieved but
— Need to work in a different category (not probabilistic)

— Diagrams commute but don't compose or
compose but don't commute
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