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Commutative diagram cryptanalysis

I Wagner, FSE 2004

I Based on commutative diagrams (cf. categories)

X1 X2

Y1 Y2

F

f1 p1 f2

I Every such diagram corresponds to a ‘local property’ of F

I “Local properties can be pieced together to obtain global properties by exploiting
the compositional behavior of commutative diagrams”
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Commutative diagram cryptanalysis

I Wagner, FSE 2004

I Based on commutative diagrams (cf. categories)

X1 X2 X3

Y1 Y2 Y3

F

f1 p1

F′

f2 p2 f3

I Every such diagram corresponds to a ‘local property’ of F

I “Local properties can be pieced together to obtain global properties by exploiting
the compositional behavior of commutative diagrams”
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Commutative diagram cryptanalysis

I How to define ‘probabilistic diagrams’? (i.e. what category)

I Probabilistic (commutative) diagrams are not the right notion

Fn
2 Fn

2 Fn
2

F2 F2 F2

F1

p1= 1
2

+
c1
2

F2

p2= 1
2

+
c2
2

id id

I Example: correlation of linear trail is c1c2 (not p1p2)

I Independence assumption is not good either,
but the real issue is the definition

3



Commutative diagram cryptanalysis
I Wagner’s proposal: stochastic commutative diagrams

Fn
2 Fn

2

F2 F2

F

f1 f2

 3
4

1
4

1
4

3
4



I Even if we could define a category where this is a diagram,
stochastic commutative diagram is an oxymoron

I Many techniques cannot be described in this way, e.g.

– Integral cryptanalysis

– No distinction between multiple and multidimensional linear

Probability theory is the wrong framework for cryptanalysis
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Commutative diagram cryptanalysis
I Wagner’s proposal: stochastic commutative diagrams

Fn
2 Fn

2

F2 F2

F

f1 f2,f ′2

 3
4

1
4

1
4

3
4



I Even if we could define a category where this is a diagram,
stochastic commutative diagram is an oxymoron

I Many techniques cannot be described in this way, e.g.

– Integral cryptanalysis

– No distinction between multiple and multidimensional linear

Probability theory is the wrong framework for cryptanalysis
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Motivation for the geometric approach

I Can we at least find a suitable definition for our diagrams?

* Even if we have this, we should not expect them to commute

I Mathematically: what category should we work in?

– Should contain FinSet as a subcategory

– Must be flexible enough (more flexible than probability theory)

I Strategy of the geometric approach:
Find a category C equivalent to FinSet, then enlarge C
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Motivation for the geometric approach
Functors F and F∗

I Vector space k[X ] of formal k-linear combinations of X

u =
∑
x∈X

ux x

I A function F : X → Y has a pushforward T F : k[X ]→ k[Y ]

T Fu =
∑
x∈X

ux F(x)

I Covariant functor F : FinSet→ C ⊂ k-FinVect

X2

X1 X3

F2F1

F2◦F1

F
=⇒

k[X2]

k[X1] k[X3]

TF2TF1

TF2TF1
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Motivation for the geometric approach
Functors F and F∗

I Vector space kX of k-valued functions on X

v : x 7→ v(x)

I A function F : X → Y has a pullback T F∨ : kY → kX

T F∨v = v ◦ F

I Contravariant functor F∗ : FinSet→ D ⊂ k-FinVect

X2

X1 X3

F2F1

F2◦F1

F
=⇒

kX2

kX1 kX3

TF∨1

TF∨1 TF∨2

TF∨2
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Motivation for the geometric approach
Functors F and F∗

I Duality between F : FinSet→ C and F∗ : FinSetop → D

I Elements of kX are also linear functions on k[X ]:

v(u) =
∑
x∈X

uxv(x)

I So we can think of kX as the dual vector space of k[X ]

I What are the categories C and D ' C op?
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Motivation for the geometric approach
Products and coproducts on kX and k[X ]

I kX is an algebra with product ∇ : kX ⊗ kX → kX(
∇(v ⊗ w)

)
(x) = v(x)w(x)

I k[X ] is a coalgebra with coproduct ∆ : k[X ]→ k[X ]⊗ k[X ]

∆(u) =
∑
x∈X

ux x ⊗ x

A⊗3 A⊗2

A⊗2 A

id⊗∇

∇⊗ id ∇

∇

A A⊗2

A⊗2 A

id⊗ η

η⊗ id id ∇

∇

I f is a morphism of algebras if ∇ ◦ (f ⊗ f ) = f ◦ ∇
I f is a morphism of coalgebras if (f ⊗ f ) ◦∆ = ∆ ◦ f
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Motivation for the geometric approach
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I kX is an algebra with product ∇ : kX ⊗ kX → kX(
∇(v ⊗ w)

)
(x) = v(x)w(x)
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∆(u) =
∑
x∈X
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∆
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Motivation for the geometric approach
Products and coproducts on kX and k[X ]

I kX is an algebra with product ∇ : kX ⊗ kX → kX(
∇(v ⊗ w)

)
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Motivation for the geometric approach
Products and coproducts on kX and k[X ]

I An algebra is separable if there exists a compatible coproduct

I A coalgebra is coseparable if there exists a compatible product

=

∇ ◦∆ = id

= =

(id⊗∇) ◦ (∆⊗ id) = ∆ ◦ ∇ = (∇⊗ id) ◦ (id⊗∆)

I Product and coproduct on kX and k[X ] correspond to copy

– Product on kX is ∇ = T copy∨

– Coproduct on k[X ] is ∆ = T copy
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Motivation for the geometric approach
Functors F and F∗ as equivalences of categories

I If k is algebraically closed, then

FinSet
F'

finite dimensional
coseparable

cocommutative
k-coalgebras

 k-coSepAlg

FinSetop
F∗'

separable
commutative
k-algebras

 k-SepAlg

I This has many consequences
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Geometric approach
Enlarging the category

I Forgetting the (co)algebra structure leads to more flexibility

I k-FinVect as an indirect but formal setting for cryptanalysis

FinSet k-coSepAlg k-SepAlg

‘Approximate’
FinSet

k-FinVect k-FinVectop

F Hom(·, k)

F Hom(·, k)

I ‘Probability theory’ is somewhere half-way (when k = R. . . )
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Geometric approach
Cryptanalytic properties

I Cryptanalytic property for a function F : X → Y consists of

– A subspace U ⊂ k[X ]

– A subspace V ⊂ kY

I Cryptanalysis is about evaluating properties:

estimating v(T Fu) for u ∈ U and v ∈ V
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Geometric approach
Cryptanalytic properties

I Diagrams that commute but don’t compose (properties)

k[X ] k[Y ]

U k[Y ]/V 0

TF

� or dually

kY kX

V kX/U0

TF∨

�

I Diagrams that compose but don’t commute (approximations)

k[X ] k[Y ]

U V 0
i

∑
i

TF

6� or dually

kY kX

V U0
i

TF∨

6�

I Decomposition kY =
⊕

i Vi ⇔ k[Y ] =
⊕

i V
0
i
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Geometric approach
Choice of basis

Linear cryptanalysis Differential cryptanalysis Integral cryptanalysis

k = C k = C k = Cp

X X × X X
Commutative group Commutative group Commutative inverse

monoid

Basis diagonalizes monoid
action (for all c in X ):

x 7→ x + c (x , y) 7→ (x + c , y + c) x 7→ cx

15



Commutation property of Midori-64
I ‘Commutative diagram cryptanalysis made practical’

Baudrin et al.

I γ(x) = (γ(x1), . . . , γ(x16)) commutes with round function

γ(x) =

{
x + f if 5Tx = 0

x + a else

I As a commutative diagram:

F64
2 F64

2

F64
2 F64

2

F

γ � γ

F

ÿ Unusual diagram, due to size of F64
2
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Commutation property of Midori-64
Alternative description

I Michiel Verbauwhede independently found this property

I Invariant set of pairs S16

S =
{(

x , γ(x)
) ∣∣ x ∈ F4

2

}
I Geometric approach: subspace of kF

64
2 ×F64

2 spanned by

δS16 =
(
δS
)⊗16

I Sparse description in the quasidifferential basis1

f =
1

2
δ0 � (δf + δa) +

1

2
δ5 � (δf − δa)

1qu,a(x , y) = (−1)u
Txδa(x + y)
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Commutation property of Midori-64
Probabilistic variant

I Probabilistic property based on the invariant

f f f f

f f f f

f f f f

f f f f

f δ0,0 f δ0,0

δ0,0 δ0,0 δ0,0 δ0,0

f δ0,0 f δ0,0

δ0,0 δ0,0 δ0,0 δ0,0

1−→1/16−−−→

f f f f

f f f f

f f f f

f f f f

f δ0,0 f δ0,0

δ0,0 δ0,0 δ0,0 δ0,0

f δ0,0 f δ0,0

δ0,0 δ0,0 δ0,0 δ0,0

I Modify ShiftRows and round constants: Vert2
SR

I 2120 weak keys instead of 296

I Prediction based on multiplying probabilities: 2−4r
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Commutation property of Vert2
SR

I Estimate of probability 2−4r does not match reality

I For example for r = 3 and sample size of 218 pairs:

I This is because the analysis ignores important trails
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Commutation property of Vert2
SR

MC ◦ SR ◦ SC ◦MC ◦ AKk ◦ SC ◦ SR ◦MC

I Second approximation for MixColumns with correlation 1/16

f f

f f
1/16−−−→

g g

g g

I g is not the indicator function of a set but g = (δ5 � δF4
2
) · f

g =
1

2
δ0 � (δf − δa) +

1

2
δ5 � (δf + δa)

I δ5 is an invariant for two rounds of Midori-64!
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Commutation property of Vert2
SR

MC ◦ SR ◦ SC ◦MC ◦ AKk ◦ SC ◦ SR ◦MC

I g is not an invariant of S, but DSg =
(
(CSδ5)� δF4

2

)
· f

h1 = DSg =
1

2
(δ14 − δ11)� δ10 +

1

2
(δ10 + δ15)� δ15

I Still correlation one for the S-box layer

g g

g g
1−→

h1 h1

h1 h1
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Commutation property of Vert2
SR

MC ◦ SR ◦ SC ◦MC ◦ AKk ◦ SC ◦ SR ◦MC

I For k a 4-bit constant such that 5Tk = 0

Dkh1 = (−1)b
Tk 1

2

(
(δe − δb)� δa − (−1) 1Tk (δa + δf)� δf

)
I If 1Tk = 1, then Dkh1 = ±h1 (cf. invariant)

I If 1Tk = 0, then Dkh1 = ±h2
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Commutation property of Vert2
SR

MC ◦ SR ◦ SC ◦MC ◦ AKk ◦ SC ◦ SR ◦MC

h1 h1

h1 h1

h2 h2

h2 h2

h2 h1

h2 h1

h1 h2

h1 h2

1/16−−−→

h1 h1

h1 h1

I Must have 1Tk0 = 1Tk2 and 1Tk8 = 1Tk10
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Commutation property of Vert2
SR

MC ◦ SR ◦ SC ◦MC ◦ AKk ◦ SC ◦ SR ◦MC

h1 h1

h1 h1

1−→

g g

g g
1/16−−−→

f f

f f
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Commutation property of Vert2
SR

I Sum of these trails gives the following probability estimate

1

212
·
(

1 + (−1)b
T(k0+k2+k8+k10)δ0(1Tk0 + 1Tk2)δ0(1Tk8 + 1Tk10)

)

I There are some additional trails

I More trails necessary for r ≥ 4
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Conclusions
I Geometric approach ≈ ‘forgetting’ the (co)algebra structure of finite sets

I Wagner’s goal of unification can be achieved but

– Need to work in a different category (not probabilistic)

– Diagrams commute but don’t compose or
compose but don’t commute
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