Some comments on commutative diagram cryptanalysis

Tim Beyne

KU Leuven and Ruhr University Bochum

April 25, 2024

- ▶ Wagner, FSE 2004
- ▶ Based on commutative diagrams (cf. categories)

$$X_1 \xrightarrow{F} X_2$$

$$f_1 \downarrow p_1 \downarrow f_2$$

$$Y_1 \longrightarrow Y_2$$

Every such diagram corresponds to a 'local property' of F

- ► Wagner, FSE 2004
- Based on commutative diagrams (cf. categories)

- ▶ Every such diagram corresponds to a 'local property' of F
- Local properties can be pieced together to obtain global properties by exploiting the compositional behavior of commutative diagrams"

- ► How to define 'probabilistic diagrams'? (i.e. what category)
- ▶ Probabilistic (commutative) diagrams are not the right notion

$$\mathbb{F}_{2}^{n} \xrightarrow{\mathbb{F}_{1}} \mathbb{F}_{2}^{n} \xrightarrow{\mathbb{F}_{2}} \mathbb{F}_{2}^{n}$$

$$\downarrow p_{1} = \frac{1}{2} + \frac{c_{1}}{2} \downarrow p_{2} = \frac{1}{2} + \frac{c_{2}}{2} \downarrow$$

$$\mathbb{F}_{2} \xrightarrow{\text{id}} \mathbb{F}_{2} \xrightarrow{\text{id}} \mathbb{F}_{2}$$

- Example: correlation of linear trail is c_1c_2 (not p_1p_2)
- ▶ Independence assumption is not good either, but the real issue is the definition

▶ Wagner's proposal: stochastic commutative diagrams

▶ Wagner's proposal: stochastic commutative diagrams

- ► Even if we could define a category where this is a diagram, stochastic commutative diagram is an oxymoron
- Many techniques cannot be described in this way, e.g.
 - Integral cryptanalysis
 - No distinction between multiple and multidimensional linear

Probability theory is the wrong framework for cryptanalysis

- Can we at least find a suitable definition for our diagrams?
- ⚠ Even if we have this, we should not expect them to commute
 - Mathematically: what category should we work in?
 - Should contain FinSet as a subcategory
 - Must be flexible enough (more flexible than probability theory)
- ightharpoonup Strategy of the geometric approach: Find a category ${\mathcal C}$ equivalent to FinSet, then enlarge ${\mathcal C}$

į

Motivation for the geometric approach Functors \mathcal{F} and \mathcal{F}^*

 \blacktriangleright Vector space k[X] of formal k-linear combinations of X

$$u = \sum_{x \in X} u_x x$$

▶ A function $F: X \to Y$ has a pushforward $T^F: k[X] \to k[Y]$

$$T^{\mathsf{F}}u = \sum_{x \in X} u_{\mathsf{X}} \, \mathsf{F}(x)$$

▶ Covariant functor \mathcal{F} : FinSet $\rightarrow \mathscr{C} \subset k$ -FinVect

Motivation for the geometric approach Functors \mathcal{F} and \mathcal{F}^*

 \triangleright Vector space k^X of k-valued functions on X

$$v: x \mapsto v(x)$$

▶ A function $F: X \to Y$ has a pullback $T^{F^{\vee}}: k^Y \to k^X$

$$T^{\mathsf{F}^\vee} v = v \circ \mathsf{F}$$

▶ Contravariant functor \mathcal{F}^* : FinSet $\rightarrow \mathscr{D} \subset k$ -FinVect

Motivation for the geometric approach Functors $\mathcal F$ and $\mathcal F^*$

- ▶ Duality between \mathcal{F} : FinSet $\to \mathscr{C}$ and \mathcal{F}^* : FinSet^{op} $\to \mathscr{D}$
- ▶ Elements of k^X are also linear functions on k[X]:

$$v(u) = \sum_{x \in X} u_x v(x)$$

- ▶ So we can think of k^X as the dual vector space of k[X]
- ▶ What are the categories $\mathscr C$ and $\mathscr D \simeq \mathscr C^{\mathsf{op}}$?

Products and coproducts on k^X and k[X]

 $\blacktriangleright k^X$ is an algebra with product $\nabla : k^X \otimes k^X \to k^X$

$$(\nabla(v\otimes w))(x)=v(x)w(x)$$

ç

Products and coproducts on k^X and k[X]

 $\blacktriangleright k^X$ is an algebra with product $\nabla : k^X \otimes k^X \to k^X$

$$(\nabla(v\otimes w))(x)=v(x)w(x)$$

▶ k[X] is a coalgebra with coproduct $\Delta : k[X] \rightarrow k[X] \otimes k[X]$

$$\Delta(u) = \sum_{x \in X} u_x \, x \otimes x$$

ç

Products and coproducts on k^X and k[X]

 \triangleright k^X is an algebra with product $\nabla : k^X \otimes k^X \to k^X$

$$(\nabla(v\otimes w))(x)=v(x)w(x)$$

▶ k[X] is a coalgebra with coproduct $\Delta : k[X] \rightarrow k[X] \otimes k[X]$

$$\Delta(u) = \sum_{x \in X} u_x \, x \otimes x$$

- f is a morphism of algebras if $\nabla \circ (f \otimes f) = f \circ \nabla$
- ▶ f is a morphism of coalgebras if $(f \otimes f) \circ \Delta = \Delta \circ f$

Ç

Motivation for the geometric approach Products and coproducts on k^X and k[X]

- ► An algebra is separable if there exists a compatible coproduct
- ▶ A coalgebra is coseparable if there exists a compatible product

Motivation for the geometric approach Products and coproducts on k^X and k[X]

- An algebra is separable if there exists a compatible coproduct
- ► A coalgebra is coseparable if there exists a compatible product

$$\nabla \circ \Delta = \mathrm{id} \qquad (\mathrm{id} \otimes \nabla) \circ (\Delta \otimes \mathrm{id}) = \Delta \circ \nabla = (\nabla \otimes \mathrm{id}) \circ (\mathrm{id} \otimes \Delta)$$

- ▶ Product and coproduct on k^X and k[X] correspond to copy
 - Product on k^X is $\nabla = T^{\mathsf{copy}^{\vee}}$
 - Coproduct on k[X] is $\Delta = T^{copy}$

Motivation for the geometric approach Functors \mathcal{F} and \mathcal{F}^* as equivalences of categories

▶ If *k* is algebraically closed, then

FinSet
$$\stackrel{\mathcal{F}}{\simeq}$$
 $\stackrel{\text{finite dimensional}}{\underset{\text{coseparable}}{\text{coseparable}}}$ $k\text{-coSepAlg}$

$$\stackrel{\text{FinSet}}{\sim}$$
 $\stackrel{\mathcal{F}^*}{\simeq}$ $\underset{\text{commutative}}{\underset{\text{k-commutative}}{\text{separable}}}$ $k\text{-SepAlg}$

$$\stackrel{\text{k-SepAlg}}{\underset{\text{k-algebras}}{\text{separable}}}$$

This has many consequences

Geometric approach Enlarging the category

- ► Forgetting the (co)algebra structure leads to more flexibility
- k-FinVect as an indirect but formal setting for cryptanalysis

lacksquare 'Probability theory' is somewhere half-way (when $k=\mathbb{R}.\dots)$

Geometric approach Cryptanalytic properties

- ightharpoonup Cryptanalytic property for a function $F: X \to Y$ consists of
 - A subspace $U \subset k[X]$
 - A subspace $V \subset k^Y$
- Cryptanalysis is about evaluating properties:

estimating $v(T^{\mathsf{F}}u)$ for $u \in U$ and $v \in V$

Geometric approach Cryptanalytic properties

Diagrams that commute but don't compose (properties)

Geometric approach Cryptanalytic properties

▶ Diagrams that commute but don't compose (properties)

Diagrams that compose but don't commute (approximations)

$$\begin{array}{cccc}
k[X] & \xrightarrow{T^{\mathsf{F}}} & k[Y] & & & & & & & & & & \\
\downarrow & & & & \uparrow & & & & & & & & \downarrow & & & \downarrow \\
U & & & & & \downarrow & & & & \downarrow & & & \downarrow & & \downarrow \\
U & & & & & & & & & & & \downarrow & & \downarrow \\
\end{array}$$
or dually
$$\begin{array}{cccc}
 & & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
 & & & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow \\
 & & & & & & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & & & \downarrow & & \downarrow & & \downarrow \\
\end{array}$$

▶ Decomposition $k^Y = \bigoplus_i V_i \Leftrightarrow k[Y] = \bigoplus_i V_i^0$

Geometric approach Choice of basis

	Linear cryptanalysis	Differential cryptanalysis	Integral cryptanalysis
_	$k=\mathbb{C}$	$k=\mathbb{C}$	$k=\mathbb{C}_p$
	X	$X \times X$	X
	Commutative group	Commutative group	Commutative inverse monoid
		Basis diagonalizes monoid action (for all c in X):	
	$x \mapsto x + c$	$(x,y)\mapsto (x+c,y+c)$	$x\mapsto cx$

1.

Commutation property of Midori-64

- 'Commutative diagram cryptanalysis made practical' Baudrin et al.
- ightharpoons $\overline{\gamma}(x) = (\gamma(x_1), \dots, \gamma(x_{16}))$ commutes with round function

$$\gamma(x) = \begin{cases} x + f & \text{if } 5^{\mathsf{T}}x = 0\\ x + a & \text{else} \end{cases}$$

As a commutative diagram:

$$\begin{array}{cccc} \mathbb{F}_2^{64} & \xrightarrow{\mathsf{F}} & \mathbb{F}_2^{64} \\ \hline \overline{\gamma} \Big| & \circlearrowright & \Big| \overline{\gamma} \\ \mathbb{F}_2^{64} & \xrightarrow{\mathsf{F}} & \mathbb{F}_2^{64} \end{array}$$

igc T Unusual diagram, due to size of $\mathbb F_2^{64}$

Commutation property of Midori-64

Alternative description

- Michiel Verbauwhede independently found this property
- \triangleright Invariant set of pairs S^{16}

$$S = \left\{ \left(x, \gamma(x) \right) \mid x \in \mathbb{F}_2^4 \right\}$$

▶ Geometric approach: subspace of $k^{\mathbb{F}_2^{64} \times \mathbb{F}_2^{64}}$ spanned by

$$\delta_{S^{16}} = \left(\delta_{S}\right)^{\otimes 16}$$

► Sparse description in the quasidifferential basis¹

$$f = \frac{1}{2} \delta_0 \boxtimes (\delta_{\mathtt{f}} + \delta_{\mathtt{a}}) + \frac{1}{2} \delta_{\mathtt{5}} \boxtimes (\delta_{\mathtt{f}} - \delta_{\mathtt{a}})$$

 $^{^{1}}q_{u,a}(x,y) = (-1)^{u^{\mathsf{T}}x}\delta_{a}(x+y)$

Commutation property of Midori-64 Probabilistic variant

▶ Probabilistic property based on the invariant

c	f	f
c	f	f
c	f	f
	r -	f f

Commutation property of Midori-64 Probabilistic variant

▶ Probabilistic property based on the invariant

f	$\delta_{0,0}$	f	$\delta_{0,0}$		f	$\delta_{0,0}$	f	$\delta_{0,0}$
$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$	1/16	$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$
f	$\delta_{0,0}$	f	$\delta_{0,0}$	-/ →	f	$\delta_{0,0}$	f	$\delta_{0,0}$
$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$		$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$	$\delta_{0,0}$

- ► Modify ShiftRows and round constants: Vert²_{SR}
- ▶ 2¹²⁰ weak keys instead of 2⁹⁶
- ▶ Prediction based on multiplying probabilities: 2^{-4r}

Commutation property of Vert²_{SR}

- ightharpoonup Estimate of probability 2^{-4r} does not match reality
- ▶ For example for r = 3 and sample size of 2^{18} pairs:

▶ This is because the analysis ignores important trails

Commutation property of $Vert_{SR}^2$ MC \circ SR \circ SC \circ MC \circ AK, \circ SC \circ SR \circ MC

▶ Second approximation for MixColumns with correlation 1/16

f	f		g	g	
		1/16			
f	f	$\stackrel{\prime}{\longrightarrow}$	g	g	

• g is not the indicator function of a set but $g = (\delta_5 \boxtimes \delta_{\mathbb{F}^4_3}) \cdot f$

$$g = rac{1}{2} \, \delta_0 oxtimes (\delta_{ extsf{f}} - \delta_{ extsf{a}}) + rac{1}{2} \, \delta_5 oxtimes (\delta_{ extsf{f}} + \delta_{ extsf{a}})$$

 δ_5 is an invariant for two rounds of Midori-64!

Commutation property of $Vert_{SR}^2$ MC \circ SR \circ SC \circ MC \circ AK, \circ SC \circ SR \circ MC

ightharpoonup g is not an invariant of S, but $D^{\mathsf{S}}g = \left((C^{\mathsf{S}}\delta_5) \boxtimes \delta_{\mathbb{F}_2^4} \right) \cdot f$

$$h_1 = D^{\mathsf{S}} g = rac{1}{2} \left(\delta_{14} - \delta_{11}
ight) oxtimes \delta_{10} + rac{1}{2} \left(\delta_{10} + \delta_{15}
ight) oxtimes \delta_{15}$$

▶ Still correlation one for the S-box layer

g	g		h_1	h_1	
		1			
g	g	$\stackrel{1}{\rightarrow}$	h_1	h_1	

Commutation property of $Vert_{SR}^2$ MC \circ SR \circ SC \circ MC \circ AK_k \circ SC \circ SR \circ MC

For k a 4-bit constant such that $5^T k = 0$

$$D^k h_1 = (-1)^{\mathtt{b}^\mathsf{T} k} \, rac{1}{2} \, \Big((\delta_\mathtt{e} - \delta_\mathtt{b}) oxtimes \delta_\mathtt{a} - (-1)^{\,\,\mathtt{1}^\mathsf{T} k} \, (\delta_\mathtt{a} + \delta_\mathtt{f}) oxtimes \delta_\mathtt{f} \Big)$$

- ▶ If $1^Tk = 1$, then $D^kh_1 = \pm h_1$ (cf. invariant)
- ▶ If $1^T k = 0$, then $D^k h_1 = \pm h_2$

Commutation property of $Vert_{SR}^2$ MC \circ SR \circ SC \circ MC \circ AK, \circ SC \circ SR \circ MC

		 	O				
h ₁	h_1	h ₂	h ₂				
h_1	h_1	<i>h</i> ₂	h ₂		h_1	h_1	
				1/16			
h ₂	h ₁	h_1	h ₂		h_1	h_1	
h ₂	h_1	h_1	h ₂				

► Must have $1^T k_0 = 1^T k_2$ and $1^T k_8 = 1^T k_{10}$

Commutation property of $Vert_{SR}^2$ $MC \circ SR \circ SC \circ MC \circ AK_k \circ SC \circ SR \circ MC$

h_1	h_1		g	g		f	f	
		1.			1/16			
h_1	h_1	\rightarrow	g	g	$\xrightarrow{\prime}$	f	f	

Commutation property of Vert²_{SR}

▶ Sum of these trails gives the following probability estimate

$$\frac{1}{2^{12}} \cdot \left(1 + (-1)^{\mathtt{b}^\mathsf{T}(k_0 + k_2 + k_8 + k_{10})} \delta_0(\mathtt{1}^\mathsf{T} k_0 + \mathtt{1}^\mathsf{T} k_2) \delta_0(\mathtt{1}^\mathsf{T} k_8 + \mathtt{1}^\mathsf{T} k_{10})\right)$$

- ► There are some additional trails
- ▶ More trails necessary for $r \ge 4$

Conclusions

- ightharpoonup Geometric approach pprox 'forgetting' the (co)algebra structure of finite sets
- Wagner's goal of unification can be achieved but
 - Need to work in a different category (not probabilistic)
 - Diagrams commute but don't compose or compose but don't commute
- Acknowledgment
 - J. Baez. Grothendieck–Galois–Brauer Theory Blog post (2023)
 - A. Carboni. Matrices, relations, and group representations.
 Journal of Algebra (1991)
- https://tim.cryptanalysis.info/