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» Symmetric-key cryptography provides

Encryption

Authentication

— Cryptographic hashing

» Obtained by (carefully) combining building blocks (‘primitives”)



Symmetric-key cryptography

» Symmetric-key cryptography provides

Encryption

Authentication

— Cryptographic hashing

» Obtained by (carefully) combining building blocks (‘primitives”)
> Symmetric-key primitives are not based on reductions to other problems

» Cryptanalysis is necessary to understand their design and security



Primitives

Permutations Block ciphers Tweakable block ciphers
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Primitives

» lterated constructions
» Multiple rounds F1,...,F,

» Many block ciphers are key-alternating

ki ko

e A




Primitives
Example




Cryptanalysis

» Often starts with an usual combinatorial property of (part of) the primitive

» Property should be useful to attack applications of the primitive, this depends on
— Access model
— Cost of evaluation (queries, time, memory, failure probability, false-positive rate)

> Most important examples:

— Linear cryptanalysis
— Differential cryptanalysis

— Integral cryptanalysis



Overview
» Linear cryptanalysis

— Correlation matrices and linear trails
— Cost analysis
— Key-recovery techniques
» Differential cryptanalysis
— Quasidifferential transition matrices and trails
— Cost analysis

— Key-recovery techniques

> We will follow a semi-classical approach



Linear cryptanalysis



Linear approximations

» Function F : F; — F7", e.g. a cryptographic primitive

» Probabilistic linear relation between x and y = F(x) (Tardy-Corfdir & Gilbert)

Zvl_yl Zulxl

i=1
~—— \——\/——/

vTy uTx

» Short notation v'y ~ uTx

» Pair (u,v) of masks u € F] and v € FJ" determines the linear approximation



Linear approximations
Correlation

> If x and F(x) are ‘unrelated’, the number of x such that vTF(x) = uTx is 2"/2

» Correlation

c— o (#{x e F7 | \;:F(x) =u'x} B ;)

=2Pr [VTF(X) = uTx] -1
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Linear approximations
Correlation

» Technical result: if r is a random variable on F5, then

2Pr[r=0] — 1 =Pr[r=0] — Prlr = 1] = E,[(-1)"]
> Applied to r = vTF(x) + u'x, this gives

1 T T
T _ T 1 1\ F(x)4u'x
2 I?{r VIF(x)=u'x] —1= > EE]FH( 1) u
x&ly
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Linear approximations
Example

> 3-bit S-box S : F3 — F3

x 000 001 010 O11
S(x) 111 010 100 101

100 101

110 111

001 110 011 000

» Linear approximation (u,v) = (001,001)

12



Linear approximations
Example

> 3-bit S-box S : F3 — F3

x 000 001 010 O11
S(x) 111 010 100 101

100
001

101

110

111

110 011 000

» Linear approximation (u,v) = (001,001)

> Correlation 2Pr, [vTS(x) = u'x] —1=2-

12



Linear approximations
Example

> 3-bit S-box S : F3 — F3

X 000 001 010 011 100 101 110 111
S(x) 111 010 100 101 001 110 011 000

» Linear approximation (u,v) = (001,001)

> Correlation 2Pry [vTS(x) =uTx] —1=2-5-1=—3
(=

1+1+1—1—1—1—1)/8

2
8
1-—
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Linear approximations
Distinguishers

> Statistical attack: sample g inputs at random and estimate correlation
» Estimation error will be about 1/,/q

» g~ 1/c? samples are enough for a distinguisher
(assuming c is not too small/large)

13



Linear approximations

14



Linear approximations

— — D
g S S S b
- ) D
D — D
g S S S &

) __ D

) ) (ﬁ%
g S S S &

) __ D

Propagation through a sequence of operations?
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Linear approximations
Piling up approximations

z
S SE

ry = u'x + WTy

rp = WTy +v'z

ri+r= u'x+v'z
Pretend that r; and ry are independent:
()
E[(-1)] £ E[-1)n] x E[(-1)7]
———

2Pr[vTz=uTx]-1  2Pr[wTy=uTx]-1 2Pr[wTy=vTz]-1

15



Linear approximations

Piling up approximations
x y z

350

ry = u'x + WTy

rp = WTy +v'z

ri+r= u'x+v'z
Pretend that r; and ry are independent:
()
E[(-1)] £ E[-1)n] x E[(-1)7]
———

2Pr[vTz=uTx]-1  2Pr[wTy=uTx]-1 2Pr[wTy=vTz]-1

» For example: v =w = v =001 gives —1/2 x —1/2=1/4
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Linear approximations

Piling up approximations
x y z

350

ry = u'x + WTy

rp = WTy +v'z

ri+r= u'x+v'z
Pretend that r; and ry are independent:
()
E[(-1)] £ E[-1)n] x E[(-1)7]
———

2Pr[vTz=uTx]-1  2Pr[wTy=uTx]-1 2Pr[wTy=vTz]-1

» For example: v =w = v =001 gives —1/2 x —1/2=1/4
» Unfortunately, this is wrong (the correct result is zero)

15



Correlation matrices
> 2™ x 2™ matrix containing correlations of linear approximations of F : 5 — F7’

Cr,=2Pr[viF(x)=u"x] -1
’ X

u

1 ‘Matrix’ rather than table because CF really does represent a linear map

16



Correlation matrices

Example

r 1
O HINHINDO =HINO O —Hiy

O O HiaHIHINHINDO O

O —HINO HINHINDO —HINO
I

O O O O i
I [

O HIaHINDO O HIa-HINO

O O HINHINO O oI

O —HNO HNO =HINO —HIN

— O O O OO oo

Il
n
()
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Correlation matrices

Example
1 0 0 0 0 0 0 0]
o -2 o -+ o LI o -1
0 0 —% % 0 0 —% —é
cs=|% 2 2 0 0 5 7 O
0 0 0 O —% 2 -1
0o -3 0 % 2 0 3 0
o o ¢+ I -2 L 0 o
R S-SR 1
00— 2 0 -3 0 0 35|
1 ifu=0
Cuo=2Pru™x =0-1= e
’ 0 else
1 ifv=0
CFo=2PvTF(x)=0]—1={ """
’ 0 else

(second property if F is invertible)
17



Correlation matrices

Multiplication property
» If F =F50F;, then CF = cF2chr
» Proof:

(cFch), , = > caci,

-3 (E S o) (L)
w y

X

1 T T 1 T T
I —1)v Fo(y)+u'x _~ A y+wTFi(x)
7 2D o 2D
1 T T
_ —1) Fa(F1(x))4u'x
)

X

» There is an easier proof without calculation



Correlation matrices
Multiplication property

> If F is invertible, then CF ™" = (CF) ™"

» If F is invertible, then CF is orthogonal
Proof: CF" = (CF)T because

F-1 _ TE-1 —_ T, 1 — T, T _1_(F
Co.u —2|';r[vF (y)=u'y] 1—2F)’(r[vx—uF(x)] 1=C,,

@ x =FY(y) is still uniform random because F is invertible

19



Correlation matrices
Multiplication property: example

001

001

20



Correlation matrices

T 1
O HINHINDO HINO O —HIN

O O HiaHIAHINHINO O

O ~HINO =HIAHINDO —HINO
|

O O O O oI
| [

O HIHINO O —Hla-HINO

O O HINHINO O I

O =HINO =HINO =HINO —IN

— O OO OO oo
L 1

T 1
O HIHINO =HINO O =l

O O HiaHIHINHINO O

O =HINO HIAHINDO =N O

O O O O oI

O —HlaHINO O —Hla-HINO

O O HINHINO O oI

O =HINO HINO =HINO —HIN

- O O O OO oo
L 1

Multiplication property: example

» Correlation of (001,001) over SoS:

» Correct result, but doesn't scale

21



Linear trails
» If F=F,0---0Fy0Fy, then CF = CFr...CcF2Ch

» Writing out this product of matrices gives

Fr Fa F1
Ur+17U1 - Z Cur+1 ur’ Cua up CU2 u
up,..
. . . F
> A linear trail is a sequence (u1, ta, ..., uy11) and has correlation [[/_; C;7

» Most analysis relies on the assumption that there exist a set A of ‘dominant trails’:

Ur+1,u1 § :Hl 1 U:+1 uj +e

ueN

22



Linear trails

Example
e — ol il
% S b S D S b
— T @";}" @ — @
) S w5
% S b S D S b
— T @";}" @ — @
SR ST S
% S b S D S b
T @"\—J" @ -/ @

ch S P Cl S Pk CS ch

» To analyze trails we need to determine Cki, CS and CP

23



Correlation matrices
Bricklayer functions
> If F(xallxe) = F1(xa)lIF2(x), then CF i, = Cotuy G

» Proof: if u= uy||uz and v = vi||va, then

CvF,u - E [(_1)VTF(X)+UTX]

E [ _1)vlTFl(X1)+V2TF2(X2)+UIX1+UIX2:|
X1,X2

_ 1\ Fi(x1)+ul x 1\ Fa(x2)+ulx
XEI[( 1)111 II}XEQ[( 1)222 22]

— CFI CF2

vi,up Tvo,u2

24



Correlation matrices
Bricklayer functions
> If F(Xl”Xz) = Fl(X1)||F2(X2) then C CFl CF2

vi||vo,ur||u2 = S S,
» Proof: if u= uy||uz and v = vi||va, then

CvF,u - E [(_1)VTF(X)+UTX]

X

X1,X2

_ 1\ Fi(x1)+ul x 1\ Fa(x2)+ulx
E[( 1)111 II}XEQ[( 1)222 22}

[ 1)v1 F1(X1)+V2TF2(X2)+u1X1+u2X2:|

— CF1 CFz

vi,up Tvo,u2

» Equivalently: CF = Ch1 @ CF

» For the S-box layer: C° = C5® C°>® C°

24



Correlation matrices
Translations and linear functions
» If F(x) = x + k, then

cF_ (1)K ifu=v
o 0 else.

Proof: C\Eu = E, [(—1)VT(X+k)+uTX] _ (_1)ka E[(_l)(u+v)Tx]

25



Correlation matrices
Translations and linear functions
» If F(x) = x + k, then

Proof: CF, = E,[(—1)* (ethtulx] — (—1) Kk E[(—1)(+)x]
> If F(x) = Mx with M € FJ"*" then
{ if u=MTv
else.
Proof: C} , = Ex[(—1)" vTMxtul *] =E[(-1) “+MT")T"]

» Bit permutation P satisfies PT = P!

25



Linear trails
Example: 3-round approximation

i
-]

P ﬁ$$

PO PP e

26



Linear trails
Example: 3-round approximation

(=1)"/8
with k1 = ki1 + koo + kos + 1



Linear trails
Example: 3-round approximation

(-1 /8 + (-1)+72/16
with kK1 = ki1 + koo + kos + 1, ko = kog + k34

26



Linear trails
Example: 3-round approximation

(<184 (<1516 + (<1516
with K1 = ki1 + koo + kos + 1, ko = kog + ka4 and k3 = ko5 + k3 6

26



Linear trails
Example: 3-round approximation

(_1)H1/8 + (—1)H1+52/16 + (—1)”1+”3/16 + (_1)f€1+52+53/32

26



Linear trails
Example: 3-round approximation

g
B 0.06 |
[0}
o)
2 004] ><
._T.?“
Jé 0.02 \
o

0

-3 -5 —3m tn tm +3

Estimated correlation (28 samples with fixed key)

> Clonoo = (~1)/8 (1 4+ (~1+2/2) (L4 (-1yo+2) e { & 4 2348 )

» Correlation reveals something about the key (but we will see better methods later)

27



Linear trails
Example: 3-round approximation

0.06 |

0.04| >< l N
9
32

Probability density

0.02 \

0

9 3 1 1 3
3 % Tm Tm ot +

Estimated correlation (28 samples with fixed key)

> Chsoor = (—1)/8 (L+ (-1t /2) (14 (-ts/2) e {4 4 43 451

» Correlation reveals something about the key (but we will see better methods later)

27



Linear trails
Example: 3-round approximation

>
p=
@ 0.06 | )
(] L
_O I -
2 0.04|
=
(3]
8 u
8 0.02
a

0

9 3 1 1 3 9
3 % Tm Tm ot T3

Estimated correlation (28 samples with fixed key)

> Chsoor = (—1)/8 (L+ (-1t /2) (14 (-ts/2) e {4 4 43 451

» Correlation reveals something about the key (but we will see better methods later)

27



Cost analysis
» Suppose the correlation is ¢ and we use g independent samples:

q
S (1)t
i=1

c=

Q|+~

» Simplifications:
— Correlation is zero in the ideal case

— g is not too small and c is not too large

» Distribution of € is close to normal with mean ¢ and variance (1 — c?)/q ~ 1/q

> Hypothesis test: [c| > t/,/q?

28



Q)
(@)
0
—+
)
S
L
<
v
n

Probability density

N
| N

1 0 t/yg
Estimated correlation
» True-positive rate:
Ps =Pr[[e| > t/\/4q]
=Prlc>1t/\/q]+Pr[c<—t/Vq]
=®(c\/qg—t)+P(—c\/qg—1t)

» False-positive rate: Pp = 2d(—t)

29



Cost analysis

» Eliminating t gives

Ps = &(d~1(Pr/2) + cv/q) + (O 1(Pe/2) — c\/q))

» If |c|\/q is large enough, one of both terms is dominant so

q= (q)l(PS) - ¢1(PF/2)>2

Cc

» One can show that this is essentially optimal

A under important assumptions

> If ¢ depends on the key, need to average the formulas above

30



Key recovery

» Correlation depends on the key, and this can be used for key-recovery
Extreme case with one dominant trail

cF, ~ (—1)" ke

» Guessing key material from the first and/or last round is usually more powerful

guess part of kg guess part of k,

O

distinguisher

» Naive cost: O(gK) for K candidate keys if the distinguisher uses g data
on average PrK incorrect candidates remain

31



Key recovery

Matsui's method
» Samples (x1,y1),...,(Xq,Yq) — reduced values z;,...,z, € FY
» For candidate key k, the estimated correlation is of the form

Ekzsz(zi): Z fil(z)#{1<i<q|z =2z}
i—1

zeFy
Kx1 K x2m 2" x 1
contribution to number of
test-statistic /-2 occurrences
of value z

— for key k and %
value z

i
2N
2A 0000000
2A2772772777277222227277

test-statistic
for key k

NN
N

» Cost: O(q + K2™) time and O(q + K +2™) memory

32



Key recovery
Fast Fourier transformation method

> Matrix [fi(2)] , often has exploitable structure

k,

» In particular: fi(z) = f(zH k), i.e. a circulant matrix (equivalently: convolution)

» Multiplication with a circulant matrix can be done using the FFT:
F(¢k) = F(fo) © F(w)

with w(z) = #{1 < i< q | zi = z} and ® the coordinate-wise product

» Cost: O(qg+ Klog K) time and O(g + K) memory

33



Differential cryptanalysis

34



Differentials

» Probabilistic relation between an input difference a and an output difference b
F(x+a)~F(x)+b

» Pair (a, b) of differences a € F5 and b € 5" determines the differential

35



Differentials

» Probabilistic relation between an input difference a and an output difference b
F(x+a)~F(x)+b

» Pair (a, b) of differences a € F5 and b € 5" determines the differential

» If F is a uniform random function, then the number of inputs x such that
F(x 4+ a) = F(x) + b is 2"/2™ on average
» Probability of a differential:

#{x € F3 | F(x+ a) = F(x) + b}
2n

= Pr [F(x + a) = F(x) + b]

35



Differentials
Example

> 3-bit S-box S : F3 — F3

x 000 001 010 O11
S(x) 111 010 100 101

100
001

101 110
110 011

111
000

» Differential (a, b)) = (001,001)

36



Differentials
Example

> 3-bit S-box S : F3 — F3

X 000 001 010 011
S(x) 111 010 100 101

100
001

101

110

111

110 011 000

» Differential (a, b)) = (001,001)

» Probability Pry [S(x +a) =S(x) + b] = %

1
4

36



Differentials
Distinguishers

» Sample g input pairs (xi,x1 + a), ..., (Xq, Xq + @) at random
» Average number of pairs with output difference b is pg

» g~ 1/p samples are enough for a distinguisher because right pairs are uncommon
(assuming p is not too small)

37



Differentials

IS

38



Differentials

— — D
g S S S b
- ) D
D — D
g S S S &

) __ D

) ) (ﬁ%
g S S S &

) __ D

Propagation through a sequence of operations?

38



Differentials
Example

S SE

Pr[S?(x + a) = S?(x) + b] > Pr[S(x + a) = S(x) 4+ c and S(y + ¢) = S(y) + b]

Pretend that x and y are independent:

Pr[S?(x + a) = S?(x) + b] § Pr[S(x + a) = S(x) + c] x Pr[S(y + ¢) = S(y) + b]

39



Differentials
Example

T

Pr[S?(x + a) = S?(x) + b] > Pr[S(x + a) = S(x) 4+ c and S(y + ¢) = S(y) + b]

Pretend that x and y are independent:

Pr[S?(x + a) = S?(x) + b] § Pr[S(x + a) = S(x) + c] x Pr[S(y + ¢) = S(y) + b]

» For example: a=b=c =001 gives1/4 x1/4=1/16
» Unfortunately, this is wrong (the correct result is 1/4)

39



Differentials

Example

QYo

X y

S S

Pr[S?(x + 001) = S?(x) + 001]
Pr[S(x 4 001) = S(x) + 001 and S(y + 001) = S(y) + 001] +

( )
Pr[S(x + 001) = S(x) + 011 and S(y 4+ 011) = S(y) + 001] +
Pr[S(x +001) = S(x) + 101 and S(y + 101) = S(y) + 001] +
Pr[S(x + 001) = S(x) + 111 and S(y + 111) = S(y) + 001]
1 1 1 1
—+t—=+=+=

16 16 16 16

40



Differentials

Example

QYo

X y
S S

Pr[S?(x 4+ 011) = S?(x) + 011]
Pr(S(x 4+ 011) = S(x) + 001 and S(y + 001) = S(y) + 011] +

( )
Pr[S(x 4+ 011) = S(x) + 010 and S(y + 010) = S(y) + 011] +
Pr[S(x + 011) = S(x) + 101 and S(y + 101) = S(y) + 011] +
Pr[S(x + 001) = S(x) + 110 and S(y + 110) = S(y) + 001]
1,111

16 16 16 16

» Unfortunately, this is still wrong in general (the correct result is 0)

P It is not reasonable to assume independence

40



Differential characteristics

» Suppose F=F,0---0F,0F; and let x; = F;(x;_1) with xo = x

» Law of total probability:

PriF(x +a1) = F(x) + ara]l = > Pr[A Fi(xi + ai) = F(x;) + ai1]

a2,...,ar

» A sequence (a1, a2,...,ar+1) is called a differential characteristic

» How to calculate the probability of a characteristic?

41



Quasidifferential transition matrices
» 227 x 227 matrix corresponding to F : F; — Fy
D(Fv’b)’(u’a) = (2 F)’(r [VTF(x) =u'x | F(x+a)=F(x)+ b] — 1)
x Pr [F(x + a) = F(x) + b]

(v, 2)

42



Quasidifferential transition matrices

i

Example

16

24

32

40

48

56

64

43



Quasidifferential transition matrices
Multiplication property
» If F = Fp 0 Fy, then DF = DF2DR

» Proof:
Fo £F
(D *D 1)(v,b),(u,a)
- Z (1 Z (—1)"TF2(y)+WTy> (1 Z
w,C 2m y 2" X
Fa(y+c)=Fa(y)+b F1(x+a)=F1(x)+c
= 21n Z (_1)VTFz(y)+uTX2im Z(_l)WTy+wTF1(x)
Fz(y+C)X;sz(y)+b "
c:Fl(x+a)—F1(x)
— 21 Z (_1)VTF2(F1(X))+uTx
n

Fa(F1 (x+a))Fa(F1(x))+b

» There is an easier proof without calculation

(_l)WTFl(X)+uTx>

44



Quasidifferential transition matrices
Multiplication property: example

45



Quasidifferential trails
» If F=F,0---Fyo0Fy, then DF = D ... DF2pF1

» Writing out this product of matrices gives

E Fa F1
wr+17w1 - Dwr+1 wr Dw3 w2 Dwzﬂﬂl

T2,

with w; = (u;, a;) for i € {1,..., r}

» A quasidifferential trail is a sequence (w1, ..., @, 1)
and has correlation []7_, DI/

» Analysis relies on the assumption that there exists a set A of ‘dominant trails':

F
Dwr+17w1 - 2 :H W:+1 w;| +e

weN i=1

46



Quasidifferential trails

> D(F(),a,+1),(0,a1) is the probability of the differential (a1, ar+1)
» Quasidifferential trails can be used to compute the probability of a differential

» Quasidifferential trails can be used to compute the probability of a characteristic:

Z H U/+1»?/ 1),(ui,ar)

Proof: similar as for the multiplication property (exercise)
simple visual proof (later)

47



Quasidifferential trails

Example
e — ol il
% S b S D S b
— T @";}" @ — @
) S w5
% S b S D S b
— T @";}" @ — @
SR ST S
% S b S D S b
T @"\—J" @ -/ @

Dk DS DP Dk DS DP Dk DS Dk

» To analyze trails we need to determine Dk, DS and DP

48



Quasidifferential trails
Bricklayer functions

> |If F(X1||X2) = Fl(Xl)HFQ(Xg), then

DF. =
(villva,b1|b2),(u1]|u2,a1]|a2)

Proof: exercise.

» Equivalently, DF = D1 @ DF2

» For the S-box layer: DS =

D% @ D° @ D>

F
D(Vllvbl)v(ulval)

Fa

D(Vzvbz)v(uz,az)

49



Quasidifferential trails
Translations and linear functions

» If F(x) = x + k, then

Proof: exercise.

(=1)*'* ifu=vanda=b

0 else.

50



Quasidifferential trails
Translations and linear functions

» If F(x) = x + k, then

vTk
F ) (=1)
D by, (ua) = {

Proof: exercise.
» If F(x) = Mx, then

0 else.

ifu=vanda=>b

else.

F )1 if u=MTv and b= Ma
(v,b),(u,a) —

Proof: exercise.

50



Quasidifferential trails
Example: 3-round differential (characteristic 1)




Quasidifferential trails
Example: 3-round differential (characteristic 1)

with kK1 = kog + k3.4

51



Quasidifferential trails
Example: 3-round differential (characteristic 1)

1 1

with K1 = ko g + k3.4,

1
56 T (—1)'“? + (—1)K2f

ko = ko5 + k36

PP OO o



Quasidifferential trails

Example: 3-round differential (characteristic 1)
1
2

1 1 1

5% TN (1) 5

with K1 = kog + k34, ko = ko5 + k36

+ (_1)l€1+1€2 1

28

51



Quasidifferential trails
Example: 3-round differential (characteristic 2)

bbb b oo

I

S
S
S

Bl
Bl

Lo

L CN

ENTE

OO PP o

52



Quasidifferential trails

Example: 3-round differential (characteristic 2)

—
A= 'a)
X
Bl
NI

with K1 = ko g + k3, k3 = ko2 + k35

52



Quasidifferential trails
Example: 3-round differential (characteristic 2)
1

® bx-ixd ;
-
% S S b
b
g TR
S S &
& o hyn::¢
g A E
S S <&
& 2 2
1 i a1 o 1
% T (=1) 1+32—8+(—1) 59

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35

52



Quasidifferential trails
Example: 3-round differential (characteristic 2)

1 1

— 4+ (_]_)Nz + (_1)l€1+1€2+l€3_

29

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35

52



Quasidifferential trails
Example: 3-round differential (characteristic 3)

bbb b oo

I

S
S
S

Bl
Bl

Lo

L C R

ENTE

OO PP o

53



Quasidifferential trails

Example: 3-round differential (characteristic 3)

X

-
A= 'a)
INTSS
=

with k2 = ko5 + k36, k3 = koo + k35

PP OO o
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Quasidifferential trails
Example: 3-round differential (characteristic 3)

: bcdx-p
-
% S S b
_—— b
g TR
S S &
& o hyn::¢
g TN
S S <&
& 2 2
1 rootra 1 w1
% T (=1) 2+32—8+(—1) 59

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential (characteristic 3)

1 1

— 4+ (_]_)Nl + (_1)l€1+1€2+l€3_

29

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35

53



Quasidifferential trails
Example: 3-round differential (characteristic 4)
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Quasidifferential trails
Example: 3-round differential (characteristic 4)
X

= bxdxd =

B¢ s B

-4 5 B

4 5 5
Ly L

with k1 = kog + k3 4, K3 = ko2 + k35

PP OO o
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Quasidifferential trails
Example: 3-round differential (characteristic 4)
X

- bxixl -4

D

% S b

- b

T T b

%Z S S b

-6 . S

T T b

%Z S S b

- o T
1 K K 1 K K 1
ﬁ_i_(_l) 1+ 3@ +(_1) 2+ 3@

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails

Example: 3-round differential (characteristic 4)
1 X
4

1
516

IR S

with K1 = kog + k34, ko = ko5 + k3 g, k3 = koo + k35
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Quasidifferential trails
Example: 3-round differential

» Overall probability depends on three key bits

o (1 (1) /2)(1 + (-1)2/2)
+ o (L (C )L (1))

+ o5 (L (CLF )L (1))

_ ]_+(_1)n1+/€3)(1+(_1)n2+n3)
cy 1 3 9 1
256" 64’ 128’ 256 16

A Characteristics with > 4 active S-boxes also contribute significantly
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Quasidifferential trails
Example: 3-round differential

o o
w
D
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Probability density
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L 1 3 9 L
256 64 128 256 16

o

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)



Quasidifferential trails
Example: 3-round differential

o o
w
D

><

% v

o
[
T

Probability density
o
N
I

]

——

I ——

o

L 1 3
256 64 128

9
256

1

16

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)
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Quasidifferential trails
Example: 3-round differential

©
~

N

©
w

o
[

Probability density
o
N

><
- m\ N ——

L 1 3 9 L
256 64 128 256 16

o

Estimated probability (28 samples with fixed key)

» Probability reveals something about the key (but we will see better methods later)
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Cost analysis

» Suppose the probability is p and we use g independent samples:
.1 .
p:a#{lglgq | F(x,-+a):F(x,-)+b}
» Simplifications:

— Probability is ep in the ideal case

— g is not too small and p is not too large

» Distribution of p is close to normal with mean p and variance p(1 — p)/q =~ p/q

» Hypothesis test: p > ep + t\/ep/q
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Cost analysis

Probability density

N

|
ep p ept+t\/ep/q

Estimated probability

» True-positive rate:
Ps = Pr [p >ep+ t\/ep/ ]
=Prijp—p> t\/ap/q —(1—¢)p]
o((

» False-positive rate: Pp = ®(—t)
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Cost analysis
» Eliminating t gives
Ps = &(d1(Pe)VE + (1 —€)y/pq)

P Inverting this gives

q:; 1—¢

1 <¢—1(Ps) - ¢—1(PF)\£>2

» One can show that this is essentially optimal

A under important assumptions
» If p depends on the key, need to average the formulas above

» 1/c is sometimes called the ‘signal-to-noise ratio’



Key recovery

» If one characteristic is dominant:
(a) Differential probability depends on the key
(b) Part of the key can be deduced from the output difference
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Key recovery

» If one characteristic is dominant:
(a) Differential probability depends on the key
(b) Part of the key can be deduced from the output difference

» Guessing key material from the first or last round is often more powerful
— Count the number of right pairs per candidate key

— Filter out invalid candidate keys based on the difference

» For K candidate keys, PEK incorrect candidates remain
1 Required amount of data depends on &

guess part of ki guess part of k,

e -

distinguisher
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Further topics
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Outlook

» Further topics in linear cryptanalysis (not exhaustive)

— Multiple linear cryptanalysis
— Zero-correlation linear cryptanalysis
— Nonlinear approximations

» Further topics in differential cryptanalysis (not exhaustive)

— Truncated differentials
— Impossible differentials

> |t is worth learning the ‘geometric approach’ to understand how these fit together
(see my talk at the SAC conference on Friday)

W tim@cryptanalysis.info

62



