Linear and differential cryptanalysis

Tim Beyne

tim@cryptanalysis.info

KU Leuven

August 15, 2023

Symmetric-key cryptography

- Symmetric-key cryptography provides
 - Encryption
 - Authentication
 - Cryptographic hashing
 - ...
- ▶ Obtained by (carefully) combining building blocks ('primitives")

Symmetric-key cryptography

- Symmetric-key cryptography provides
 - Encryption
 - Authentication
 - Cryptographic hashing
 - ...
- Obtained by (carefully) combining building blocks ('primitives")
- Symmetric-key primitives are not based on reductions to other problems
- Cryptanalysis is necessary to understand their design and security

Primitives

Primitives

- Iterated constructions
- ightharpoonup Multiple *rounds* F_1, \ldots, F_r
- ▶ Many block ciphers are key-alternating

Primitives Example

Cryptanalysis

- Often starts with an usual combinatorial property of (part of) the primitive
- ▶ Property should be useful to attack applications of the primitive, this depends on
 - Access model
 - Cost of evaluation (queries, time, memory, failure probability, false-positive rate)
- Most important examples:
 - Linear cryptanalysis
 - Differential cryptanalysis
 - Integral cryptanalysis

Overview

- ► Linear cryptanalysis
 - Correlation matrices and linear trails
 - Cost analysis
 - Key-recovery techniques
- Differential cryptanalysis
 - Quasidifferential transition matrices and trails
 - Cost analysis
 - Key-recovery techniques
- ► We will follow a semi-classical approach

Linear cryptanalysis

Linear approximations

- ▶ Function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, e.g. a cryptographic primitive
- ▶ Probabilistic linear relation between x and y = F(x) (Tardy-Corfdir & Gilbert)

$$\underbrace{\sum_{i=1}^{m} v_i y_i}_{v^{\mathsf{T}} y} \approx \underbrace{\sum_{i=1}^{n} u_i x_i}_{u^{\mathsf{T}} x}$$

- ► Short notation $v^T y \approx u^T x$
- Pair (u,v) of masks $u \in \mathbb{F}_2^n$ and $v \in \mathbb{F}_2^m$ determines the linear approximation

ç

Linear approximations Correlation

- If x and F(x) are 'unrelated', the number of x such that $v^T F(x) = u^T x$ is $2^n/2$
- Correlation

$$c = 2 \times \left(\frac{\#\{x \in \mathbb{F}_2^n \mid v^\mathsf{T}\mathsf{F}(x) = u^\mathsf{T}x\}}{2^n} - \frac{1}{2} \right)$$
$$= 2 \Pr_{\mathbf{x}} \left[v^\mathsf{T}\mathsf{F}(\mathbf{x}) = u^\mathsf{T}\mathbf{x} \right] - 1$$

Linear approximations Correlation

▶ Technical result: if r is a random variable on \mathbb{F}_2 , then

$$2\Pr_{r}[r=0] - 1 = \Pr_{r}[r=0] - \Pr_{r}[r=1] = \mathsf{E}_{r}[(-1)^{r}]$$

▶ Applied to $\mathbf{r} = \mathbf{v}^\mathsf{T} \mathbf{F}(\mathbf{x}) + \mathbf{u}^\mathsf{T} \mathbf{x}$, this gives

$$2\Pr_{\boldsymbol{x}}\left[\boldsymbol{v}^{\mathsf{T}}\mathsf{F}(\boldsymbol{x})=\boldsymbol{u}^{\mathsf{T}}\boldsymbol{x}\right]-1=\frac{1}{2^{n}}\sum_{\boldsymbol{x}\in\mathbb{F}_{2}^{n}}(-1)^{\boldsymbol{v}^{\mathsf{T}}\mathsf{F}(\boldsymbol{x})+\boldsymbol{u}^{\mathsf{T}}\boldsymbol{x}}$$

Linear approximations Example

▶ 3-bit S-box S : $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

X	000	001	010	011	100	101	110	111
S(x)	111	010	100	101	001	110	011	000

Linear approximation (u, v) = (001, 001)

Linear approximations Example

▶ 3-bit S-box S : $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

X	000	001	010	011	100	101	110	111
S(x)	111	010	100	10 <mark>1</mark>	001	110	011	000

Linear approximation (u, v) = (001, 001)

► Correlation $2 \Pr_{\mathbf{x}} \left[\mathbf{v}^{\mathsf{T}} \mathsf{S}(\mathbf{x}) = \mathbf{u}^{\mathsf{T}} \mathbf{x} \right] - 1 = 2 \cdot \frac{2}{8} - 1 = -\frac{1}{2}$

Linear approximations Example

▶ 3-bit S-box S : $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

X	000	001	010	011	100	101	110	111
S(x)	111	010	100	10 <mark>1</mark>	001	110	011	000

Linear approximation (u, v) = (001, 001)

► Correlation
$$2 \Pr_{\mathbf{x}} \left[v^{\mathsf{T}} \mathsf{S}(\mathbf{x}) = u^{\mathsf{T}} \mathbf{x} \right] - 1 = 2 \cdot \frac{2}{8} - 1 = -\frac{1}{2} = (-1 - 1 + 1 + 1 - 1 - 1 - 1 - 1)/8$$

Linear approximations Distinguishers

- ▶ Statistical attack: sample *q* inputs at random and estimate correlation
- **E**stimation error will be about $1/\sqrt{q}$
- $ightharpoonup qpprox 1/c^2$ samples are enough for a distinguisher (assuming c is not too small/large)

Linear approximations

Linear approximations

Propagation through a sequence of operations?

Linear approximations Piling up approximations

Pretend that r_1 and r_2 are independent:

$$\underbrace{\mathbb{E}[(-1)^{r_1+r_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}z=u^{\mathsf{T}}x]-1} \overset{\$}{=} \underbrace{\mathbb{E}[(-1)^{r_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=u^{\mathsf{T}}x]-1} \times \underbrace{\mathbb{E}[(-1)^{r_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=v^{\mathsf{T}}z]-1}$$

Linear approximations Piling up approximations

Pretend that \mathbf{r}_1 and \mathbf{r}_2 are independent:

$$\underbrace{\mathbb{E}[(-1)^{r_1+r_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}z=u^{\mathsf{T}}x]-1} \stackrel{\clubsuit}{=} \underbrace{\mathbb{E}[(-1)^{r_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=u^{\mathsf{T}}x]-1} \times \underbrace{\mathbb{E}[(-1)^{r_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=v^{\mathsf{T}}z]-1}$$

► For example: u = w = v = 001 gives $-1/2 \times -1/2 = 1/4$

Linear approximations Piling up approximations

$$r_1 = u^{\mathsf{T}} \mathbf{x} + w^{\mathsf{T}} \mathbf{y}$$

$$r_2 = w^{\mathsf{T}} \mathbf{y} + v^{\mathsf{T}} \mathbf{z}$$

$$r_1 + r_2 = u^{\mathsf{T}} \mathbf{x} + v^{\mathsf{T}} \mathbf{z}$$

Pretend that r_1 and r_2 are independent:

$$\underbrace{\mathbb{E}[(-1)^{r_1+r_2}]}_{2\operatorname{Pr}[v^{\mathsf{T}}z=u^{\mathsf{T}}x]-1} \stackrel{\$}{=} \underbrace{\mathbb{E}[(-1)^{r_1}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=u^{\mathsf{T}}x]-1} \times \underbrace{\mathbb{E}[(-1)^{r_2}]}_{2\operatorname{Pr}[w^{\mathsf{T}}y=v^{\mathsf{T}}z]-1}$$

- ► For example: u = w = v = 001 gives $-1/2 \times -1/2 = 1/4$
- Unfortunately, this is wrong (the correct result is zero)

 $ightharpoonup 2^m imes 2^n$ matrix containing correlations of linear approximations of $F: \mathbb{F}_2^n o \mathbb{F}_2^m$

$$C_{v,u}^{\mathsf{F}} = 2 \, \Pr_{\mathbf{x}} \left[v^{\mathsf{T}} \mathsf{F}(\mathbf{x}) = u^{\mathsf{T}} \mathbf{x} \right] - 1$$

i 'Matrix' rather than table because C^{F} really does represent a linear map

Correlation matrices Example

$$C^{\mathsf{S}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

Correlation matrices Example

$$C^{\mathsf{S}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$C_{0,u}^{\mathsf{F}} = 2 \operatorname{Pr}[u^{\mathsf{T}} \mathbf{x}] = 0] - 1 = \begin{cases} 1 & \text{if } u = 0 \\ 0 & \text{else} \end{cases}$$

$$C_{v,0}^{\mathsf{F}} = 2 \operatorname{Pr}[v^{\mathsf{T}} \mathsf{F}(\mathbf{x}) = 0] - 1 = \begin{cases} 1 & \text{if } v = 0 \\ 0 & \text{else} \end{cases}$$
(second property if F is invertible)

Multiplication property

- ▶ If $F = F_2 \circ F_1$, then $C^F = C^{F_2}C^{F_1}$
- ► Proof:

$$\begin{split} \left(C^{\mathsf{F}_2}C^{\mathsf{F}_1}\right)_{v,u} &= \sum_w C^{\mathsf{F}_2}_{v,w}C^{\mathsf{F}_1}_{w,u} \\ &= \sum_w \left(\frac{1}{2^m}\sum_y (-1)^{v^\mathsf{T}\mathsf{F}_2(y) + w^\mathsf{T}y}\right) \left(\frac{1}{2^n}\sum_x (-1)^{w^\mathsf{T}\mathsf{F}_1(x) + u^\mathsf{T}x}\right) \\ &= \frac{1}{2^n}\sum_{x,y} (-1)^{v^\mathsf{T}\mathsf{F}_2(y) + u^\mathsf{T}x} \frac{1}{2^m}\sum_w (-1)^{w^\mathsf{T}y + w^\mathsf{T}\mathsf{F}_1(x)} \\ &= \frac{1}{2^n}\sum_x (-1)^{v^\mathsf{T}\mathsf{F}_2(\mathsf{F}_1(x)) + u^\mathsf{T}x} \end{split}$$

There is an easier proof without calculation

Correlation matrices Multiplication property

- ▶ If F is invertible, then $C^{F^{-1}} = (C^F)^{-1}$
- ► If F is invertible, then C^F is orthogonal Proof: $C^{F^{-1}} = (C^F)^T$ because

$$C_{v,u}^{\mathsf{F}^{-1}} = 2 \, \Pr_{\boldsymbol{y}} \left[v^\mathsf{T} \mathsf{F}^{-1}(\boldsymbol{y}) = u^\mathsf{T} \boldsymbol{y} \right] - 1 = 2 \, \Pr_{\boldsymbol{x}} \left[v^\mathsf{T} \boldsymbol{x} = u^\mathsf{T} \mathsf{F}(\boldsymbol{x}) \right] - 1 = C_{u,v}^\mathsf{F}$$

 $\mathbf{g} \quad \mathbf{x} = \mathsf{F}^{-1}(\mathbf{y})$ is still uniform random because F is invertible

Correlation matrices Multiplication property: example

Multiplication property: example

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 \end{bmatrix}$$

► Correlation of (001,001) over S ∘ S:

$$\frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} = 0$$

Correct result, but doesn't scale

Linear trails

- ▶ If $F = F_r \circ \cdots \circ F_2 \circ F_1$, then $C^F = C^{F_r} \cdots C^{F_2} C^{F_1}$
- Writing out this product of matrices gives

$$C_{u_{r+1},u_1}^{\mathsf{F}} = \sum_{u_2,\ldots,u_r} C_{u_{r+1},u_r}^{\mathsf{F}_r} \cdots C_{u_3,u_2}^{\mathsf{F}_2} C_{u_2,u_1}^{\mathsf{F}_1}$$

- ▶ A linear trail is a sequence $(u_1, u_2, \dots, u_{r+1})$ and has correlation $\prod_{i=1}^r C_{u_{i+1}, u_i}^{F_i}$
- Most analysis relies on the assumption that there exist a set Λ of 'dominant trails':

$$C_{u_{r+1},u_1}^{\mathsf{F}} = \sum_{u \in \Lambda} \prod_{i=1}^{r} C_{u_{i+1},u_i}^{\mathsf{F}_i} + \varepsilon$$

Linear trails Example

▶ To analyze trails we need to determine C^{k_1} , C^{S} and C^{P}

Bricklayer functions

- ▶ If $F(x_1||x_2) = F_1(x_1)||F_2(x_2)$, then $C_{v_1||v_2,u_1||u_2}^F = C_{v_1,u_1}^{F_1} C_{v_2,u_2}^{F_2}$
- ▶ Proof: if $u = u_1 || u_2$ and $v = v_1 || v_2$, then

$$\begin{split} C_{v,u}^{\mathsf{F}} &= \underset{\mathbf{x}}{\mathsf{E}} \big[(-1)^{v^{\mathsf{T}} \mathsf{F}(\mathbf{x}) + u^{\mathsf{T}} \mathbf{x}} \big] \\ &= \underset{\mathbf{x}_{1}, \mathbf{x}_{2}}{\mathsf{E}} \big[(-1)^{v_{1}^{\mathsf{T}} \mathsf{F}_{1}(\mathbf{x}_{1}) + v_{2}^{\mathsf{T}} \mathsf{F}_{2}(\mathbf{x}_{2}) + u_{1}^{\mathsf{T}} \mathbf{x}_{1} + u_{2}^{\mathsf{T}} \mathbf{x}_{2}} \big] \\ &= \underset{\mathbf{x}_{1}}{\mathsf{E}} \big[(-1)^{v_{1}^{\mathsf{T}} \mathsf{F}_{1}(\mathbf{x}_{1}) + u_{1}^{\mathsf{T}} \mathbf{x}_{1}} \big] \underset{\mathbf{x}_{2}}{\mathsf{E}} \big[(-1)^{v_{2}^{\mathsf{T}} \mathsf{F}_{2}(\mathbf{x}_{2}) + u_{2}^{\mathsf{T}} \mathbf{x}_{2}} \big] \\ &= C_{v_{1}, u_{1}}^{\mathsf{F}_{1}} C_{v_{2}, u_{2}}^{\mathsf{F}_{2}} \end{split}$$

Bricklayer functions

- ▶ If $F(x_1||x_2) = F_1(x_1)||F_2(x_2)$, then $C_{v_1||v_2,u_1||u_2}^F = C_{v_1,u_1}^{F_1} C_{v_2,u_2}^{F_2}$
- ▶ Proof: if $u = u_1 || u_2$ and $v = v_1 || v_2$, then

$$\begin{split} C_{v,u}^{\mathsf{F}} &= \underset{\mathbf{x}}{\mathsf{E}} \big[(-1)^{v^{\mathsf{T}} \mathsf{F}(\mathbf{x}) + u^{\mathsf{T}} \mathbf{x}} \big] \\ &= \underset{\mathbf{x}_1, \mathbf{x}_2}{\mathsf{E}} \big[(-1)^{v_1^{\mathsf{T}} \mathsf{F}_1(\mathbf{x}_1) + v_2^{\mathsf{T}} \mathsf{F}_2(\mathbf{x}_2) + u_1^{\mathsf{T}} \mathbf{x}_1 + u_2^{\mathsf{T}} \mathbf{x}_2} \big] \\ &= \underset{\mathbf{x}_1}{\mathsf{E}} \big[(-1)^{v_1^{\mathsf{T}} \mathsf{F}_1(\mathbf{x}_1) + u_1^{\mathsf{T}} \mathbf{x}_1} \big] \underset{\mathbf{x}_2}{\mathsf{E}} \big[(-1)^{v_2^{\mathsf{T}} \mathsf{F}_2(\mathbf{x}_2) + u_2^{\mathsf{T}} \mathbf{x}_2} \big] \\ &= C_{v_1, u_1}^{\mathsf{F}_1} C_{v_2, u_2}^{\mathsf{F}_2} \end{split}$$

- ▶ Equivalently: $C^F = C^{F_1} \otimes C^{F_2}$
- ▶ For the S-box layer: $C^S = C^S \otimes C^S \otimes C^S$

Translations and linear functions

 $\blacktriangleright \text{ If } F(x) = x + k, \text{ then }$

$$C_{v,u}^{\mathsf{F}} = \begin{cases} (-1)^{v^{\mathsf{T}}k} & \text{if } u = v \\ 0 & \text{else} \end{cases}$$

Proof:
$$C_{v,u}^{\mathsf{F}} = \mathsf{E}_{\mathbf{x}} \big[(-1)^{v^{\mathsf{T}}(\mathbf{x}+k) + u^{\mathsf{T}}\mathbf{x}} \big] = (-1)^{v^{\mathsf{T}}k} \, \mathsf{E} \big[(-1)^{(u+v)^{\mathsf{T}}\mathbf{x}} \big]$$

Translations and linear functions

 $\blacktriangleright \text{ If } F(x) = x + k, \text{ then }$

$$C_{v,u}^{\mathsf{F}} = \begin{cases} (-1)^{v^{\mathsf{T}}k} & \text{if } u = v \\ 0 & \text{else} \end{cases}$$

Proof:
$$C_{v,u}^{\mathsf{F}} = \mathsf{E}_{x} [(-1)^{v^{\mathsf{T}}(x+k)+u^{\mathsf{T}}x}] = (-1)^{v^{\mathsf{T}}k} \mathsf{E} [(-1)^{(u+v)^{\mathsf{T}}x}]$$

▶ If F(x) = Mx with $M \in \mathbb{F}_2^{m \times n}$ then

$$C_{v,u}^{\mathsf{F}} = \begin{cases} 1 & \text{if } u = M^{\mathsf{T}}v \\ 0 & \text{else} \end{cases}$$

Proof:
$$C_{v,u}^{\mathsf{F}} = \mathsf{E}_{x} [(-1)^{v^{\mathsf{T}} M x + u^{\mathsf{T}} x}] = \mathsf{E} [(-1)^{(u + M^{\mathsf{T}} v)^{\mathsf{T}} x}]$$

▶ Bit permutation P satisfies $P^T = P^{-1}$

Linear trails

Example: 3-round approximation

Linear trails

Example: 3-round approximation

Example: 3-round approximation

Example: 3-round approximation

Example: 3-round approximation

$$(-1)^{\kappa_1}/8 + (-1)^{\kappa_1+\kappa_2}/16 + (-1)^{\kappa_1+\kappa_3}/16 + (-1)^{\kappa_1+\kappa_2+\kappa_3}/32$$
 with $\kappa_1 = k_{1,1} + k_{2,2} + k_{2,5} + 1$, $\kappa_2 = k_{2,8} + k_{3,4}$ and $\kappa_3 = k_{2,5} + k_{3,6}$

Example: 3-round approximation

Estimated correlation (28 samples with fixed key)

- $C_{001,001}^{\mathsf{F}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \pm \frac{1}{32}, \pm \frac{3}{32}, \pm \frac{9}{32} \right\}$
- Correlation reveals something about the key (but we will see better methods later)

Example: 3-round approximation

Estimated correlation (2^8 samples with fixed key)

- $C_{001,001}^{\mathsf{F}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \pm \frac{1}{32}, \pm \frac{3}{32}, \pm \frac{9}{32} \right\}$
- Correlation reveals something about the key (but we will see better methods later)

Example: 3-round approximation

Estimated correlation (2^8 samples with fixed key)

- $C_{001,001}^{\mathsf{F}} = (-1)^{\kappa_1}/8 \ \left(1 + (-1)^{\kappa_1 + \kappa_2}/2\right) \left(1 + (-1)^{\kappa_1 + \kappa_3}/2\right) \in \left\{ \pm \frac{1}{32}, \pm \frac{3}{32}, \pm \frac{9}{32} \right\}$
- Correlation reveals something about the key (but we will see better methods later)

Cost analysis

Suppose the correlation is c and we use q independent samples:

$$\widehat{oldsymbol{c}} = rac{1}{q} \sum_{i=1}^q (-1)^{u^\mathsf{T} oldsymbol{x}_i +
u^\mathsf{T} oldsymbol{y}_i}$$

- Simplifications:
 - Correlation is zero in the ideal case
 - -q is not too small and c is not too large
- lacktriangle Distribution of $\widehat{m{c}}$ is close to normal with mean c and variance $(1-c^2)/q \approx 1/q$
- ▶ Hypothesis test: $|\hat{c}| \ge t/\sqrt{q}$?

Cost analysis

► True-positive rate:

$$\begin{aligned} P_{\mathsf{S}} &= \mathsf{Pr}\left[|\widehat{\boldsymbol{c}}| \geq t/\sqrt{q} \right] \\ &= \mathsf{Pr}\left[\widehat{\boldsymbol{c}} \geq t/\sqrt{q} \right] + \mathsf{Pr}\left[\widehat{\boldsymbol{c}} \leq -t/\sqrt{q} \right] \\ &= \Phi(c\sqrt{q} - t) + \Phi(-c\sqrt{q} - t) \end{aligned}$$

False-positive rate: $P_F = 2\Phi(-t)$

Cost analysis

► Eliminating *t* gives

$$P_{\mathsf{S}} = \Phi ig(\Phi^{-1}(P_{\mathsf{F}}/2) + c \sqrt{q} ig) + \Phi ig(\Phi^{-1}(P_{\mathsf{F}}/2) - c \sqrt{q} ig) ig)$$

▶ If $|c|\sqrt{q}$ is large enough, one of both terms is dominant so

$$q = \left(rac{\Phi^{-1}(P_{\mathsf{S}}) - \Phi^{-1}(P_{\mathsf{F}}/2)}{c}
ight)^2$$

- One can show that this is essentially optimal
- **1** under important assumptions
 - ▶ If c depends on the key, need to average the formulas above

Key recovery

Correlation depends on the key, and this can be used for key-recovery Extreme case with one dominant trail

$$C_{v,u}^{\mathsf{F}} \approx (-1)^{\mathbf{w}^{\mathsf{T}}\mathbf{k}} c$$

► Guessing key material from the first and/or last round is usually more powerful

Naive cost: $\mathcal{O}(qK)$ for K candidate keys if the distinguisher uses q data on average $P_{\mathsf{F}}K$ incorrect candidates remain

Key recovery

Matsui's method

- ▶ Samples $(x_1, y_1), \dots, (x_q, y_q)$ → reduced values $z_1, \dots, z_q \in \mathbb{F}_2^m$
- \triangleright For candidate key k, the estimated correlation is of the form

$$\widehat{c}_k = \sum_{i=1}^n f_k(z_i) = \sum_{z \in \mathbb{F}_2^m} f_k(z) \# \{1 \leq i \leq q \mid z_i = z\}$$

Cost: $\mathcal{O}(q+K2^m)$ time and $\mathcal{O}(q+K+2^m)$ memory

Key recovery Fast Fourier transformation method

- Matrix $[f_k(z)]_{k,z}$ often has exploitable structure
- ▶ In particular: $f_k(z) = f(z \boxplus k)$, i.e. a circulant matrix (equivalently: convolution)
- Multiplication with a circulant matrix can be done using the FFT:

$$\mathscr{F}(\widehat{c}_k) = \mathscr{F}(f_0) \odot \mathscr{F}(w)$$

with $w(z) = \#\{1 \le i \le q \mid z_i = z\}$ and \odot the coordinate-wise product

▶ Cost: $\mathcal{O}(q + K \log K)$ time and $\mathcal{O}(q + K)$ memory

Differential cryptanalysis

Differentials

Probabilistic relation between an input difference a and an output difference b

$$F(x + a) \approx F(x) + b$$

▶ Pair (a, b) of differences $a \in \mathbb{F}_2^n$ and $b \in \mathbb{F}_2^m$ determines the differential

Differentials

▶ Probabilistic relation between an input difference a and an output difference b

$$F(x + a) \approx F(x) + b$$

- ▶ Pair (a,b) of differences $a \in \mathbb{F}_2^n$ and $b \in \mathbb{F}_2^m$ determines the differential
- ▶ If F is a uniform random function, then the number of inputs x such that F(x + a) = F(x) + b is $2^n/2^m$ on average
- Probability of a differential:

$$\frac{\#\{x \in \mathbb{F}_2^n \mid \mathsf{F}(x+a) = \mathsf{F}(x) + b\}}{2^n} = \Pr_{\mathbf{x}} \left[\mathsf{F}(\mathbf{x} + a) = \mathsf{F}(\mathbf{x}) + b \right]$$

▶ 3-bit S-box S : $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

X	000	001	010	011	100	101	110	111
S(x)	111	010	100	101	001	110	011	000

▶ Differential (a, b) = (001, 001)

▶ 3-bit S-box S : $\mathbb{F}_2^3 \to \mathbb{F}_2^3$

X	000	001	010	011	100	101	110	111
S(x)	111	010	100	101	001	110	011	000

▶ Differential (a, b) = (001, 001)

Probability $Pr_x \left[S(x+a) = S(x) + b \right] = \frac{2}{8} = \frac{1}{4}$

Differentials Distinguishers

- ▶ Sample q input pairs $(x_1, x_1 + a), \dots, (x_q, x_q + a)$ at random
- Average number of pairs with output difference b is pq
- ho q pprox 1/p samples are enough for a distinguisher because right pairs are uncommon (assuming p is not too small)

Differentials

Differentials

Propagation through a sequence of operations?

$$\Pr[S^2(x+a) = S^2(x) + b] \ge \Pr[S(x+a) = S(x) + c \text{ and } S(y+c) = S(y) + b]$$

Pretend that **x** and **y** are independent:

$$\Pr[\mathsf{S}^2(\boldsymbol{x}+\boldsymbol{a})=\mathsf{S}^2(\boldsymbol{x})+\boldsymbol{b}] \overset{\$}{\geq} \Pr[\mathsf{S}(\boldsymbol{x}+\boldsymbol{a})=\mathsf{S}(\boldsymbol{x})+\boldsymbol{c}] \times \Pr[\mathsf{S}(\boldsymbol{y}+\boldsymbol{c})=\mathsf{S}(\boldsymbol{y})+\boldsymbol{b}]$$

$$\Pr[S^2(x+a) = S^2(x) + b] \ge \Pr[S(x+a) = S(x) + c \text{ and } S(y+c) = S(y) + b]$$

Pretend that **x** and **y** are independent:

$$\Pr[S^2(x+a) = S^2(x) + b] \stackrel{\$}{\geq} \Pr[S(x+a) = S(x) + c] \times \Pr[S(y+c) = S(y) + b]$$

- For example: a = b = c = 001 gives $1/4 \times 1/4 = 1/16$
- ▶ Unfortunately, this is wrong (the correct result is 1/4)

$$\Pr[S^{2}(x + 001) = S^{2}(x) + 001]$$

$$= \Pr[S(x + 001) = S(x) + 001 \text{ and } S(y + 001) = S(y) + 001] + \Pr[S(x + 001) = S(x) + 011 \text{ and } S(y + 011) = S(y) + 001] + \Pr[S(x + 001) = S(x) + 101 \text{ and } S(y + 101) = S(y) + 001] + \Pr[S(x + 001) = S(x) + 111 \text{ and } S(y + 111) = S(y) + 001]$$

$$\stackrel{\$}{\approx} \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}$$

$$\Pr[S^{2}(x+011) = S^{2}(x) + 011]$$
= $\Pr[S(x+011) = S(x) + 001 \text{ and } S(y+001) = S(y) + 011] + \Pr[S(x+011) = S(x) + 010 \text{ and } S(y+010) = S(y) + 011] + \Pr[S(x+011) = S(x) + 101 \text{ and } S(y+101) = S(y) + 011] + \Pr[S(x+001) = S(x) + 110 \text{ and } S(y+110) = S(y) + 001]$

$$\stackrel{\$}{\approx} \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}$$

- Unfortunately, this is still wrong in general (the correct result is 0)
- ▶ It is not reasonable to assume independence

Differential characteristics

- ▶ Suppose $F = F_r \circ \cdots \circ F_2 \circ F_1$ and let $x_i = F_i(x_{i-1})$ with $x_0 = x$
- Law of total probability:

$$\Pr[\mathsf{F}(\mathbf{x} + a_1) = \mathsf{F}(\mathbf{x}) + a_{r+1}] = \sum_{a_2,...,a_r} \Pr\left[\bigwedge_{i=1}^r \mathsf{F}_i(\mathbf{x}_i + a_i) = \mathsf{F}(\mathbf{x}_i) + a_{i+1}\right]$$

- ightharpoonup A sequence $(a_1, a_2, \dots, a_{r+1})$ is called a differential characteristic
- How to calculate the probability of a characteristic?

Quasidifferential transition matrices

 $ightharpoonup 2^{2m} imes 2^{2n}$ matrix corresponding to $\mathsf{F}: \mathbb{F}_2^n o \mathbb{F}_2^m$

$$D_{(v,b),(u,a)}^{\mathsf{F}} = \left(2 \Pr_{\mathbf{x}} \left[v^{\mathsf{T}} \mathsf{F}(\mathbf{x}) = u^{\mathsf{T}} \mathbf{x} \mid \mathsf{F}(\mathbf{x}+a) = \mathsf{F}(\mathbf{x}) + b \right] - 1\right)$$
$$\times \Pr_{\mathbf{x}} \left[\mathsf{F}(\mathbf{x}+a) = \mathsf{F}(\mathbf{x}) + b \right]$$

Quasidifferential transition matrices

Example

Quasidifferential transition matrices

Multiplication property

- ▶ If $F = F_2 \circ F_1$, then $D^F = D^{F_2}D^{F_1}$
- ► Proof:

$$\begin{split} &\left(D^{\mathsf{F}_2}D^{\mathsf{F}_1}\right)_{(v,b),(u,a)} \\ &= \sum_{w,c} \left(\frac{1}{2^m} \sum_{\substack{F_2(y+c) = \mathsf{F}_2(y) + b}} (-1)^{v^\mathsf{T}\mathsf{F}_2(y) + w^\mathsf{T}y}\right) \left(\frac{1}{2^n} \sum_{\substack{X \\ \mathsf{F}_1(x+a) = \mathsf{F}_1(x) + c}} (-1)^{w^\mathsf{T}\mathsf{F}_1(x) + u^\mathsf{T}x}\right) \\ &= \frac{1}{2^n} \sum_{\substack{X,y \\ \mathsf{F}_2(y+c) = \mathsf{F}_2(y) + b \\ c = \mathsf{F}_1(x+a) - \mathsf{F}_1(x)}} (-1)^{v^\mathsf{T}\mathsf{F}_2(y) + u^\mathsf{T}x} \frac{1}{2^m} \sum_{w} (-1)^{w^\mathsf{T}y + w^\mathsf{T}\mathsf{F}_1(x)} \\ &= \frac{1}{2^n} \sum_{\substack{X \\ \mathsf{F}_2(\mathsf{F}_1(x+a)) = \mathsf{F}_2(\mathsf{F}_1(x)) + b}} (-1)^{v^\mathsf{T}\mathsf{F}_2(\mathsf{F}_1(x)) + u^\mathsf{T}x} \end{split}$$

There is an easier proof without calculation

Quasidifferential transition matrices Multiplication property: example

- ▶ If $F = F_r \circ \cdots F_2 \circ F_1$, then $D^F = D^{F_r} \cdots D^{F_2} D^{F_1}$
- Writing out this product of matrices gives

$$D_{\varpi_{r+1},\varpi_1}^{\mathsf{F}} = \sum_{\varpi_2,\dots,\varpi_r} D_{\varpi_{r+1},\varpi_r}^{\mathsf{F}_r} \cdots D_{\varpi_3,\varpi_2}^{\mathsf{F}_2} D_{\varpi_2,\varpi_1}^{\mathsf{F}_1}$$

with $\varpi_i = (u_i, a_i)$ for $i \in \{1, \ldots, r\}$

- A quasidifferential trail is a sequence $(\varpi_1, \ldots, \varpi_{r+1})$ and has correlation $\prod_{i=1}^r D_{\varpi_{i+1}, \varpi_i}^{\mathsf{F}_i}$
- \blacktriangleright Analysis relies on the assumption that there exists a set Λ of 'dominant trails':

$$D_{\varpi_{r+1},\varpi_1}^{\mathsf{F}} = \sum_{\varpi \in \Lambda} \prod_{i=1}^{r} D_{\varpi_{i+1},\varpi_i}^{\mathsf{F}_i} + \varepsilon$$

- \triangleright $D_{(0,a_{r+1}),(0,a_1)}^{\mathsf{F}}$ is the probability of the differential (a_1,a_{r+1})
- Quasidifferential trails can be used to compute the probability of a differential
- Quasidifferential trails can be used to compute the probability of a characteristic:

$$\sum_{u_2,...,u_r} \prod_{i=1}^r D_{(u_{i+1},a_{i+1}),(u_i,a_i)}^{\mathsf{F}_i}$$

Proof: similar as for the multiplication property (exercise) simple visual proof (later)

Quasidifferential trails Example

ightharpoonup To analyze trails we need to determine D^{k_1} , $D^{\mathcal{S}}$ and D^{P}

Quasidifferential trails Bricklayer functions

► If $F(x_1||x_2) = F_1(x_1)||F_2(x_2)$, then

$$D_{(v_1||v_2,b_1||b_2),(u_1||u_2,a_1||a_2)}^{\mathsf{F}_1} = D_{(v_1,b_1),(u_1,a_1)}^{\mathsf{F}_1} D_{(v_2,b_2),(u_2,a_2)}^{\mathsf{F}_2}$$

Proof: exercise.

- ▶ Equivalently, $D^{\mathsf{F}} = D^{\mathsf{F}_1} \otimes D^{\mathsf{F}_2}$
- ▶ For the S-box layer: $D^S = D^S \otimes D^S \otimes D^S$

Translations and linear functions

▶ If F(x) = x + k, then

$$D_{(v,b),(u,a)}^{\mathsf{F}} = egin{cases} (-1)^{v^{\mathsf{T}}k} & ext{if } u = v ext{ and } a = b \ 0 & ext{else}. \end{cases}$$

Proof: exercise.

Translations and linear functions

$$D_{(v,b),(u,a)}^{\mathsf{F}} = egin{cases} (-1)^{v^{\mathsf{T}}k} & \text{if } u = v \text{ and } a = b \\ 0 & \text{else.} \end{cases}$$

Proof: exercise.

▶ If F(x) = Mx, then

$$D_{(v,b),(u,a)}^{\mathsf{F}} = egin{cases} 1 & ext{if } u = M^{\mathsf{T}}v ext{ and } b = Ma \ 0 & ext{else}. \end{cases}$$

Proof: exercise.

Example: 3-round differential (characteristic 1)

Example: 3-round differential (characteristic 1)

Example: 3-round differential (characteristic 1)

Example: 3-round differential (characteristic 1)

Example: 3-round differential (characteristic 2)

5:

Example: 3-round differential (characteristic 2)

Example: 3-round differential (characteristic 2)

with $\kappa_1 = k_{2,8} + k_{3,4}$, $\kappa_2 = k_{2,5} + k_{3,6}$, $\kappa_3 = k_{2,2} + k_{3,5}$

Example: 3-round differential (characteristic 2)

Example: 3-round differential (characteristic 3)

Example: 3-round differential (characteristic 3)

Example: 3-round differential (characteristic 3)

with
$$\kappa_1 = k_{2,8} + k_{3,4}$$
, $\kappa_2 = k_{2,5} + k_{3,6}$, $\kappa_3 = k_{2,2} + k_{3,5}$

Example: 3-round differential (characteristic 3)

Example: 3-round differential (characteristic 4)

Example: 3-round differential (characteristic 4)

Example: 3-round differential (characteristic 4)

with $\kappa_1 = k_{2,8} + k_{3,4}$, $\kappa_2 = k_{2,5} + k_{3,6}$, $\kappa_3 = k_{2,2} + k_{3,5}$

Example: 3-round differential (characteristic 4)

Quasidifferential trails Example: 3-round differential

Overall probability depends on three key bits

$$\frac{1}{2^{6}} (1 + (-1)^{\kappa_{1}}/2)(1 + (-1)^{\kappa_{2}}/2)
+ \frac{1}{2^{8}} (1 + (-1)^{\kappa_{1}+\kappa_{3}})(1 + (-1)^{\kappa_{1}}/2)
+ \frac{1}{2^{8}} (1 + (-1)^{\kappa_{2}+\kappa_{3}})(1 + (-1)^{\kappa_{2}}/2)
+ \frac{1}{2^{10}} (1 + (-1)^{\kappa_{1}+\kappa_{3}})(1 + (-1)^{\kappa_{2}+\kappa_{3}})
\in \left\{ \frac{1}{256}, \frac{1}{64}, \frac{3}{128}, \frac{9}{256}, \frac{1}{16} \right\}$$

 $oldsymbol{\Lambda}$ Characteristics with \geq 4 active S-boxes also contribute significantly

Example: 3-round differential

Probability reveals something about the key (but we will see better methods later)

Example: 3-round differential

▶ Probability reveals something about the key (but we will see better methods later)

Example: 3-round differential

▶ Probability reveals something about the key (but we will see better methods later)

Cost analysis

Suppose the probability is p and we use q independent samples:

$$\widehat{oldsymbol{
ho}} = rac{1}{q}\#ig\{1 \leq i \leq q \mid \mathsf{F}(oldsymbol{x}_i + oldsymbol{a}) = \mathsf{F}(oldsymbol{x}_i) + big\}$$

- Simplifications:
 - Probability is εp in the ideal case
 - -q is not too small and p is not too large
- lacktriangle Distribution of $\widehat{m{p}}$ is close to normal with mean p and variance p(1-p)/q pprox p/q
- ▶ Hypothesis test: $\hat{\boldsymbol{p}} \ge \varepsilon p + t \sqrt{\varepsilon p/q}$

Cost analysis

► True-positive rate:

$$\begin{split} P_{\mathsf{S}} &= \mathsf{Pr}\left[\widehat{\boldsymbol{\rho}} \geq \varepsilon p + t\sqrt{\varepsilon p/q}\right] \\ &= \mathsf{Pr}\left[\widehat{\boldsymbol{\rho}} - p \geq t\sqrt{\varepsilon p/q} - (1-\varepsilon)p\right] \\ &= \Phi((1-\varepsilon)\sqrt{pq} - t\sqrt{\varepsilon}) \end{split}$$

False-positive rate: $P_F = \Phi(-t)$

Cost analysis

► Eliminating t gives

$$P_{\mathsf{S}} = \Phi ig(\Phi^{-1}(P_{\mathsf{F}}) \sqrt{arepsilon} + (1-arepsilon) \sqrt{pq} ig)$$

Inverting this gives

$$q = rac{1}{
ho} \left(rac{\Phi^{-1}ig(P_{\mathsf{S}}ig) - \Phi^{-1}ig(P_{\mathsf{F}}ig)\sqrt{arepsilon}}{1-arepsilon}
ight)^2$$

- One can show that this is essentially optimal
- **1** under important assumptions
- ▶ If p depends on the key, need to average the formulas above
- ▶ $1/\varepsilon$ is sometimes called the 'signal-to-noise ratio'

Key recovery

- ▶ If one characteristic is dominant:
 - (a) Differential probability depends on the key
 - (b) Part of the key can be deduced from the output difference

Key recovery

- ▶ If one characteristic is dominant:
 - (a) Differential probability depends on the key
 - (b) Part of the key can be deduced from the output difference
- Guessing key material from the first or last round is often more powerful
 - Count the number of right pairs per candidate key
 - Filter out invalid candidate keys based on the difference
- \triangleright For K candidate keys, $P_{\mathsf{F}}K$ incorrect candidates remain
- f i Required amount of data depends on arepsilon

Further topics

Outlook

- Further topics in linear cryptanalysis (not exhaustive)
 - Multiple linear cryptanalysis
 - Zero-correlation linear cryptanalysis
 - Nonlinear approximations
- Further topics in differential cryptanalysis (not exhaustive)
 - Truncated differentials
 - Impossible differentials
- ▶ It is worth learning the 'geometric approach' to understand how these fit together (see my talk at the SAC conference on Friday)
- igspace tim@cryptanalysis.info