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Linear cryptanalysis
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I Variants/extensions:

– Multiple- and multidimensional linear
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Goals

1. Uniform description of different variants of linear cyptanalysis

2. Generalization of approximations and the links between them

3. Alternative motivation for trails and the general piling-up principle
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Inner product space CG

I CG = vector space of all functions G → C with G = {g1, . . . , gl}

CG ∼= C|G|

f 7→

f (g1)
...

f (gl)


I Inner product between f , g ∈ CG :

〈f , g〉 =
∑
x∈G

f (x)g(x)

I Orthogonality: f ⊥ g ⇔ 〈f , g〉 = 0

θ

|〈f , g〉| = cos θ
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Input and output properties

FG G

G
SSubset S ⊆ G

G
R F(S) Count values in

R ∩ F(S) ⊆ G

1S : G → C (1S ∈ CG)

1S(x) =
{

1 if x ∈ S
0 else

1∗
R : CG → C (1R ∈ CG∗)

1∗
R(f ) =

∑
x∈R f (x) = 〈1R , f 〉

1∗
R(1F(S)) = |R ∩ F(S)|

5 (video: 4)



Input and output properties

FG G

G
SSubset S ⊆ G

G
R F(S) Count values in

R ∩ F(S) ⊆ G

1S : G → C (1S ∈ CG)

1S(x) =
{

1 if x ∈ S
0 else

1∗
R : CG → C (1R ∈ CG∗)

1∗
R(f ) =

∑
x∈R f (x) = 〈1R , f 〉

1∗
R(1F(S)) = |R ∩ F(S)|

5 (video: 4)



Input and output properties

FG G

G
SSubset S ⊆ G

G
R F(S) Count values in

R ∩ F(S) ⊆ G

1S : G → C (1S ∈ CG)

1S(x) =
{

1 if x ∈ S
0 else

1∗
R : CG → C (1R ∈ CG∗)

1∗
R(f ) =

∑
x∈R f (x) = 〈1R , f 〉

1∗
R(1F(S)) = |R ∩ F(S)|

State
function
f ∈ CG

‘Observation’ of state
linear functional

g∗ ∈ CG∗

5 (video: 4)



Input and output properties

FG G

G
SSubset S ⊆ G

G
R F(S) Count values in

R ∩ F(S) ⊆ G

1S : G → C (1S ∈ CG)

1S(x) =
{

1 if x ∈ S
0 else

1∗
R : CG → C (1R ∈ CG∗)

1∗
R(f ) =

∑
x∈R f (x) = 〈1R , f 〉

1∗
R(1F(S)) = |R ∩ F(S)|

State
function
f ∈ CG

‘Observation’ of state
linear functional
g∗ ∈ CG∗∼= CG

g∗(f ) = 〈g , f 〉 5 (video: 4)



Input and output properties
Transition matrices

FG H
x F(x)

T FCG CH
f T Ff

Transformation T F: T Fδx = δF(x)

with δx(z) =
{

1 if z = x
0 else

CFCĜ CĤ
f̂ CF f̂

FG FH

Fourier transformation: FG : CG → CĜ

FG χ = |G| δχ
Diagonalizes translations (F(x) = x + t).

Group character χ
Homomorphism χ : G → C \ {0}
χ(x + y) = χ(x)χ(y)
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Input and output properties
Transition matrices and correlation matrices
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Input and output properties
Higher-dimensional properties

I Generalization: subspace V ⊆ CG as input (output) property

I Consider all states (observation functions) f ∈ V at once

I Common examples:

– Multiple linear cryptanalysis

– Projection functions [Wagner, 2004, Baignères et al., 2004]

Exclamation Independence from the choice of basis for V
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Goals

1. Uniform description of different variants of linear cyptanalysis
vector spaces of functions G → C (subspaces of CG)

2. Generalization of approximations and the links between them

3. Alternative motivation for trails and the general piling-up principle
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Approximations∗

I Pair of subspaces U ⊆ CG , V ⊆ CH with ‘approximation map’ 〈V ,U〉F : U → V

〈V ,U〉F := πV ◦ T F ◦ ιU = πF (V ) ◦ CF ◦ ιF (U)

I Principal correlations: min{dimU, dimV }-largest singular values of 〈V ,U〉F

Cosines of principal angles (F injective)
V

T FU

I Linear cryptanalysis (dimU = dimV = 1):
principal correlation coincides with absolute value of ordinary correlation
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Approximations
Perfect

VT FU

T FU ⊆ V
I Integral attacks
I Invariant subspaces
I Nonlinear invariants

Zero-correlation

V
T FU

T FU ⊥ V
I Zero-correlation

linear approximations
I Multidimensional ∼

General

V
T FU

〈V ,U〉F
I (Non)linear

approximations
I Multiple ∼
I Multidimensional ∼
I Partitioning

Theorem 4.2
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Goals

1. Uniform description of different variants of linear cyptanalysis
vector spaces of functions G → C (subspaces of CG)

2. Generalization of approximations and the links between them
pairs of subspaces U ⊆ CG , V ⊆ CH with approximation map 〈V ,U〉F : U → V

3. Alternative motivation for trails and the general piling-up principle
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Trails∗
Traditional piling-up principle

F1 F2 . . . Fr
u1

x1

u2

x2

u3

x3

ur

xr

ur+1

xr+1

c1 c2 cr

Correlation c = 2Pr[u>
1 x1 = u>

r+1xr+1]− 1?

I Piling-up principle: c ≈
∏r

i=1 ci (correlation of trail)

I Motivation:

– Markov cipher assumption (equivalent to averaging over independent round keys)
Info-Circle Requires taking into account round key masks

– Dominant trail hypothesis (follows from [Daemen et al., 1995])
12 (video: 18)



Trails∗
General piling-up principle

T F1 T F2 . . . T Fr
U1 U2 U3 Ur Ur+1

〈U2,U1〉F1 〈U3,U2〉F2 〈Ur+1,Ur 〉Fr

Approximation map 〈Ur+1,U1〉Fr◦···◦F1?

I Piling-up principle:

〈Ur+1,U1〉Fr◦···◦F1 = 〈Ur+1,Ur 〉Fr ◦ · · · ◦ 〈U3,U2〉F2 ◦ 〈U2,U1〉F1 + E

(see Theorem 5.1 for error term E)

I Geometric motivation: successive orthogonal projection
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Conclusion

1. Uniform description of different variants of linear cyptanalysis
vector spaces of functions G → C (subspaces of CG)

2. Generalization of approximations and the links between them
pairs of subspaces U ⊆ CG , V ⊆ CH with approximation map 〈V ,U〉F : U → V

3. Alternative motivation for trails and the general piling-up principle
process of successive orthogonal projection

I More results and applications in the paper

DOWNLOAD https://homes.esat.kuleuven.be/~tbeyne/geometric
Envelope tim.beyne@esat.kuleuven.be

14 (video: 19)

https://homes.esat.kuleuven.be/~tbeyne/geometric


References I

Baignères, T., Junod, P., and Vaudenay, S. (2004).
How far can we go beyond linear cryptanalysis?
In Lee, P. J., editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 432–450,
Jeju Island, Korea. Springer, Heidelberg, Germany.

Daemen, J., Govaerts, R., and Vandewalle, J. (1995).
Correlation matrices.
In Preneel, B., editor, FSE’94, volume 1008 of LNCS, pages 275–285, Leuven,
Belgium. Springer, Heidelberg, Germany.

Wagner, D. (2004).
Towards a unifying view of block cipher cryptanalysis.
In Roy, B. K. and Meier, W., editors, FSE 2004, volume 3017 of LNCS, pages
16–33, New Delhi, India. Springer, Heidelberg, Germany.

0 (video: 19)


	Appendix

