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Preface

These are the notes for a series of lectures given at Ruhr University Bochum
between July and September 2024. The goal of these lectures was to develop ultra-
metric integral cryptanalysis over products of finite fields with the same character-
istic. A preliminary version of this theory appeared in [1, Chapter 5]. The special
case of Fn2 was treated in [3].

The audience for these notes are researchers already familiar with linear and
integral cryptanalysis, at least for primitives defined on Fn2 . This background is not
necessary to understand most of the material, but the main motivation for ultra-
metric integral cryptanalysis may be unclear without it. Most of the mathematical
background (mainly p-adic numbers) is developed as necessary, with the exception
of results from linear algebra.

The notes are organized in three chapters: (1) a general discussion of crypt-
analysis on commutative inverse monoids, which includes linear and ultrametric
integral cryptanalysis as special cases, (2) the main principles of ultrametric inte-
gral cryptanalysis on products of fields with the same characteristic and (3) a few
examples of applications, primarily a ‘cryptanalytic’ proof of the Ax-Katz theorem
and some analysis of generic Feistel ciphers.

Tim Beyne
April 2025
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Cryptanalysis on commutative inverse monoids
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1. Introduction

Ultrametric integral cryptanalysis is in some sense a generalization of the alge-
braic approach to integral cryptanalysis, but a proper motivation requires at least
some familiarity with the geometric approach to cryptanalysis [1]. The goal of this
lecture is to introduce the basic principles of this approach, and to identify the
right mathematical setting to develop cryptanalytic theories that are ‘as nice as’
linear cryptanalysis. The prerequisites for this lecture are linear algebra and linear
cryptanalysis, which will be used as a running example.

2. Geometric approach to cryptanalysis

We consider finite sets and functions F : X → Y , such as cryptographic prim-
itives, between them. The geometric approach replaces such functions by linear
operators on vector spaces. In particular, it does so from two dual points of view:

2.1. Covariant picture. Let k be a field. The free vector space on X is the
set of all formal k-linear combinations of elements of X:

k[X] = Span{δx | x ∈ X} ,
where δx is the basis vector corresponding to the element x in X. In principle, k[X]
comes with an additional coalgebra structure, but this is outside of the scope of
this lecture. Intuitively, a vector in k[X] is an assignment of weights to each of the
elements of X. In other words, it is a device to keep track of the state. A function
F : X → Y corresponds to a linear map T F : k[X] → k[Y ] defined by

T F δx = δF(x) .

The operator T F describes how the state changes when a function F is applied. It
will be called the pushforward operator of F.

2.2. Contravariant picture. The set of functions from X to k forms a vector
space kX under pointwise addition of functions. The vector space kX has a basis
consisting of the indicator functions δx of singleton sets {x}:

kX = Span{δx | x ∈ X} .
Again, kX in principle comes with a natural algebra structure, but this is outside
of our current scope. The interpretation of functions in kX is that they correspond
to ‘probes’ of the state. This is related to the fact that functions in kX correspond
one-to-one to linear functions on k[X], as we can set

v

(∑
x∈X

ux δx

)
=
∑
x∈X

ux v(x) .

The fact that observations are assumed to be linear is a limitation, but there are
compelling reasons to adopt this restriction and this point of view is powerful
enough to describe all known general cryptanalytic methods. A more profound
motivation can be given using category-theoretic language, but this will be avoided
here. For a function F : X → Y , there is again a corresponding linear map T F∨

:
kY → kX , now defined by

T F∨
δx = δx ◦ F .

Extending this linearly, we see that the pullback operator T F∨ corresponds to pre-
composition by F.



2. GEOMETRIC APPROACH TO CRYPTANALYSIS 3

2.3. Duality. The dual of a vector space V is the space of linear functions
from V to the base field k. Hence, kX is naturally isomorphic to the dual vector
space of k[X]. The basis vectors δx and δx are dual. Moreover, T F∨ is the adjoint
of T F: (

T F∨
v
)
(u) = v

(
T Fu

)
.

Despite the similarity between k[X] and kX , it will be essential to keep them
separate. For linear cryptanalysis, the distinction can mostly be ignored — but not
for ultrametric integral cryptanalysis.

2.4. Cryptanalytic properties. A cryptanalytic property of F is a pair (U, V )
with U a subspace of k[X] and V a subspace of kY . The evaluation of (U, V ) at u
in U and v in V is defined as

v
(
T Fu

)
.

The combinatorial quantities of interest in cryptanalysis, such as correlations of
linear approximations, can be expressed in this way. It is rarely feasible to evaluate
properties exactly, so we need techniques to estimate them up to a ‘small’ error.
For this to be meaningful, the field k should have a metric structure. This point is
crucial to motivate ultrametric integral cryptanalysis, and we will come back to it
at the end of this lecture.

Example 1. Let δA =
∑
x∈A δx be the indicator of a subset A ⊂ X and let δB

be the indicator function of a subset B ⊂ X, then
δB
(
T FδA

)
= |{x ∈ A | F(x) ∈ B}| .

The data of all evaluations of a cryptanalytic property (U, V ) are equivalent to
a linear map U ⊗ V → k or equivalently

U → k[X]/V 0

x 7→ T Fx (mod V 0) ,

where V 0 = {x ∈ k[Y ] | v(x) = 0 for all v ∈ V } is the annihilator of V . Equivalently,
this is the solution set of the linear system described by V . This can also be
expressed dually as the linear map

V → kX/U0

x 7→ T F∨
x (mod U0) ,

where U0 = {x ∈ kX | x(u) = 0 for all u ∈ U}. There is a more general definition of
properties — not discussed here — as a pair of maps that simplifies these equivalent
descriptions at the cost of more abstraction.

2.5. Propagation. We mention two basic but important results. Firstly,
T Fr◦···◦F2◦F1 = T Fr · · ·T F2T F1 .

The dual version of this is that
T Fr◦···◦F2◦F1

∨
= T F∨

1 T F∨
2 · · ·T F∨

r .

Secondly, we can define a tensor product of k[X] and k[Y ] as k[X×Y ], together with
the bilinear map ⊗ : k[X]× k[Y ] → k[X ×Y ] defined by δx⊗ δy = δ(x,y). Similarly,
we define a tensor product of linear maps on k[X] and k[Y ] that is compatible in
the sense that if A : k[X1] → k[X2] and B : k[Y1] → k[Y2], then A ⊗ B is the
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map k[X1 × Y1] → k[X2 × Y2] such that
(
A ⊗ B

)
(δx ⊗ δy) = A(δx) ⊗ B(δy). If

F(x) = (F1(x1), . . . ,Fn(xn)), then

T F = T F1 ⊗ · · · ⊗ T Fn .

The prototypical example is a layer of parallel S-boxes. Similar definitions can be
given for kX ⊗ kY .

2.6. Trails. Trails are the main tool to analyze compositions F = Fr ◦ · · · ◦ F1

of functions Fi : Xi → Xi+1. The basic idea is that we want to lift properties of
F1, . . . ,Fr to properties of their composition. To do this in a sound way, we should
have a decomposition of k[Xi] as

k[Xi] =
⊕
U∈Ωi

U .

Let U c be the algebraic complement of U in Ωi with respect to this decomposition.
This is equivalent to the following decomposition for kXi :

kXi =
⊕
U∈Ωi

(U c)0 .

In particular, for (V c)0 in Ωi, we have V ∼= k[Xi]/(V
c)0 and the property (U, (V c)0)

corresponds a linear map U → V given by πV T FιU , where ιU is inclusion and πV is
projection on V with complement V c. The map 〈V,U〉F = πV T

FιU will be called an
approximation (map) of F. The approximation map 〈V,U〉F : U → V is equivalent
to the data of all evaluations of the property (U, (V c)0)

Theorem 1. For i in {1, . . . , r+ 1}, let Ωi be a set of subspaces of k[Xi] such
that k[Xi] =

⊕
U∈Ωi

U . Every approximation map 〈Ur+1, U1〉F of F = Fr ◦ · · · ◦ F1

with U1 in Ω1 and Ur+1 in Ωr+1 satisfies

〈Ur+1, U1〉F =
∑

U2,...,Ur

〈Ur+1, Ur〉Fr
· · · 〈U3, U2〉F2

〈U2, U1〉F1
,

where the sum is over all (U2, . . . , Ur) in
∏r
i=2 Ωi.

A sequence (U1, . . . , Ur+1) of intermediate subspaces, including the endpoints,
will be called a trail. This is equivalent to a sequence of compatible approximations.
The map of a trail is the composition of approximations

〈Ur+1, Ur〉Fr · · · 〈U3, U2〉F2〈U2, U1〉F1 .

In these lectures, we will mostly consider the one-dimensional version of trails.
In this case, the spaces U1, . . . , Ur+1 are spanned by a single vector. Hence, the
decomposition of k[Xi] corresponds to a choice of basis:

k[Xi] =
⊕
β∈Bi

Span{bβ} ,

where Bi is a set of indices or labels for the basis functions. The corresponding
decomposition of kXi then corresponds to the dual basis:

kXi =
⊕
β∈Bi

Span{bβ} ,

where bβ(bβ) = 1. The approximation map Span{bβi
} → Span{bβi+1

} is given by

x 7→ bβi+1
(
T Fibβi

)
x .
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If we define BFi as the change-of-basis of T F relative to the bases {bβ | β ∈ Bi}
and {bβ | β ∈ Bi+1}, then

BFi

βi+1,βi
= δβi+1

(
BFiδβi

)
= bβi+1

(
T Fibβi

)
,

where we index the coordinates of BFi by elements from the label sets Bi and Bi+1.
The above theorem then translates to

BF
βr+1,β1

=
∑

β2,...,βr

r∏
i=1

BFi

βi+1,βi
.

Sequences (β1, . . . , βr+1) can be reasonably called trails, as they are in one-to-one
correspondence to trails as defined above. In this one-dimensional setting, a natural
question is how to choose the bases for k[X1], . . . , k[Xr+1]. The numbers BFi

βi+1,βi

will be called correlations. It is worth mentioning that the decomposition into
one-dimensional trails is equivalent to the simple equality

BF = BFr · · ·BF2BF1 .

The general ‘sum of trails’ principle can be interpreted as multiplication of matrices
with a predetermined block structure.

Example 2. In linear cryptanalysis, BF is the correlation matrix CF. In the
case of linear cryptanalysis over Fn2 , Bi = Fn2 and

bu =
1

2n

∑
x∈Fn

2

(−1)u • x δx .

Furthermore, bu(x) = (−1)u • x. Here, u • x =
∑n
i=1 uixi denotes the dot product

between u = (u1, . . . , un) and x = (x1, . . . , xn).

3. Geometric approach with partial symmetries

The geometric approach may be applied to develop a theory of cryptanalysis
for functions between sets with partial symmetries. This setting can be formalized
by considering finite sets X with an action of a finite monoid M . This leads to the
following setup, where k is a field:

• The free vector space k[X] on X is a coalgebra and a k[M ]-module.
• The function space kX on X is an algebra and a kM -comodule.

These two points of view are again dual. In general, as long as k[X] is a semisimple
k[M ]-module, this setup leads to a way to choose trails (in the basis-free sense)
that behave well with respect to the action of M and under morphisms of M -sets.
If k[X] is only completely decomposable, then the situation is more complicated.
Here, we restrict this general setting in two important ways:

• It will be assumed that X =M , and M acts by multiplication: x 7→ mx.
• The setup should lead to a unique theory of one-dimensional trails.

The prototypical example of such a theory is linear cryptanalysis. Hence, we essen-
tially want to identify those cases that lead to something with the same properties
as linear cryptanalysis.
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3.1. Simultaneous diagonalization. The action of an element m of X cor-
responds to the function x 7→ m · x, the pushforward of which will be denoted by
Tm. Equivalently, k[X] acts on itself by

δm · u = Tm u ,

and this can be extended to all of k[X] by linearity. This turns k[X] into an algebra,
but we will not discuss this observation here. In ‘nice’ cryptanalytic theories such as
linear cryptanalysis, the existence of an algebra or more generally module structure
on k[X] provides a unique decomposition of k[X] into one-dimensional vector spaces
that maximally ‘simplifies’ the description of the action of X on itself. That is, there
exists a joint eigenvector basis of the linear maps Tm for all m in X. This is only
possible if X is commutative, since if v is a joint eigenvector then

Tm1Tm2v = λm1
λm2

v = λm2
λm1

v = Tm2Tm1v .

For a finite group, commutativity is enough if k contains enough roots of unity. The
situation for monoids is slightly more complicated. As shown below, it is necessary
and sufficient that X is a so-called inverse monoid.

Lemma 1. Commuting linear endomorphisms are simultaneously diagonalize-
able if and only if they are individually diagonalizeable.

Proof. Let T1, T2, . . . , Tn be commuting endomorphisms on a vector space V .
We prove that if they are diagonalizeable, then they are simultaneously diagonal-
izeable. The other direction is clear. The eigenspaces Vλ of T1 yield the following
decomposition of V :

V =
⊕
λ

Vλ .

Since T1Tix = TiT1x = λTix for all x in Vλ, each of the spaces Vλ is stable under
Ti. Hence, it is sufficient to prove that the restrictions of T2, . . . , Tn to Vλ are
simultaneously diagonalizeable. Repeatedly applying this argument shows that
T1, T2, . . . , Tn are simultaneously diagonalizeable. �

A commutative monoid X is called inverse if for all x there exists a y such
that x2y = x and y2x = y. The following result show that this is a necessary and
sufficient condition for all the matrices Tm to be diagonalizeable.

Theorem 2. Let X be a finite monoid and k an algebraically closed field
of characteristic zero. The endomorphisms Tm with m in X are simultaneously
diagonalizeable if and only if X is a commutative inverse monoid.

Proof. Let us start by assuming that X is a commutative inverse monoid.
By the results above, it is sufficient to prove that Tm is diagonalizeable for all
m in X. Since k is algebraically closed, Tm is diagonalizeable if and only if its
minimal polynomial has distinct roots. However, X is finite, so there exist a and
b ≥ a such that mb = ma. This implies that the minimal polynomial of Tm divides
xa(xb−a−1). In particular, if Tm is not diagonalizeable, then this must be because
the geometric multiplicity of eigenvalue zero is less than its algebraic multiplicity.
By the ‘lemme des noyaux’ or the existence of the Jordan normal form, there exists
a subspace V such that (Tm)n V = 0 for some n ≥ 1 and Tm is diagonalizeable on
a complement of V . However, X is inverse, so there exists an m∗ such that

Tm =
(
Tm
)2
Tm

∗
.
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However, this implies kerTm = ker
(
Tm
)2. Iterating this argument for m2,m3, . . .

shows that kerTm = ker(Tm)n and hence TmV = 0. This means that Tm is
diagonalizeable on V . Hence, Tm is diagonalizeable.

For the converse claim, assume that the matrices Tm are simultaneously diag-
onalizeable. It was already shown above that X must be commutative. As already
mentioned, the eigenvalues of Tm are necessarily zero or a root of unity. It follows
that, by taking a sufficiently high power of Tm, we get a matrix (Tm)n with all
eigenvalues equal to zero or one. We can assume n ≥ 1. In diagonal form, one can
see that (

Tm
)n
Tm = Tm .

Equivalently, m2mn−1 = m. Hence, X is a commutative inverse monoid. �

3.2. Characters. Finally, we show that the joint eigenvectors are uniquely
determined by their character. This implies that the joint eigenvector basis is
unique up to scale.

Theorem 3. Let X be a finite commutative inverse monoid and k an al-
gebraically closed field of characteristic zero. There exist precisely |X| distinct
monoid homomorphisms χ : X → k. For every character χ, there exists a unique
joint eigenvector bχ of Tm for all m in X such that

Tm bχ = χ(m) bχ ,

Furthermore, up to scale, the dual basis vectors bχ are equal to the characters of X.

Proof. Let v1, . . . , v|X| be a joint eigenvector basis. One can see that for each
i there exists a monoid homomorphism χi : X → k such that

Tm vi = χi(m) vi .

The fact that χi is a homomorphism follows from the multiplicativity of the matrices
Tm. By linear algebra, there exists a dual basis v1, . . . , v|X| for kX and the dual
basis vectors are joint eigenvectors of Tm∨ :

Tm
∨
vi =

∑
j

vi
(
Tm vj

)
vj = χi(m) vi .

Hence, vi
(
mx
)
= χi(m)vi(x) for all x and m in X. Since vi is not the zero vector,

this implies vi(1) 6= 0. Hence, x 7→ vi(x)/vi(1) is a homomorphism of monoids.
This shows that there are at least |X| linearly independent monoid homomorphisms
X → k, and they are in one-to-one correspondence with the joint eigenvectors of
Tm up to scaling.

To show that there are exactly |X| characters, it is enough to prove that char-
acters are linearly independent. Let χ1, . . . , χn be distinct characters. We prove
the result by induction on n, with n = 1 following from the fact that characters are
nonzero. Let c1, . . . , cn be arbitrary scalars such that for all x in X,

n∑
i=1

ci χi(x) = 0 .

Without loss of generality, let us assume that c1 6= 0. For j in {1, . . . , n}, there
exists an m in X such that χ1(m) 6= χj(m). Hence,

0 =

n∑
i=1

ci
(
χi(mx)− χ1(m)χi(x)

)
=

n∑
i=2

ci
(
χi(m)− χ1(m)

)
χi(x) .
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By the induction hypothesis, any n−1 characters are linearly independent. Hence,
cj
(
χj(m)− χ1(m)

)
= 0. However, χj(m) 6= χ1(m) for some m so cj = 0. �

4. Structure of commutative inverse monoids

It is worth investigating the structure of commutative inverse monoids in more
detail. In particular, it turns out that commutative inverse monoids can be under-
stood as a kind of meet-semilattice of Abelian groups.

4.1. Idempotents. Above, we already implicitly used the following lemma.

Lemma 2. For every x in a finite commutative monoid X, there exists a positive
n such that xn is idempotent.

Proof. Since X is finite, there exist non-negative integers a and b such that
xa = xa+b. It follows from this that xa = xa+ab = xa(b+1). Multiplication by
xa(b−1) gives xa+a(b−1) = xa(b+1)+a(b−1). It follows that (xab)2 = xab so xab is
idempotent. �

The idempotents of a commutative inverse monoid form a meet-semilattice.
The partial order on the idempotents also extends to all of X by setting x ≤ y if
and only if e ≤ f and x = ey, where e and f are the unique idempotent powers of
x and y respectively.

Lemma 3. The submonoid EX of idempotent elements of a commutative inverse
monoid X is a bounded meet-semilattice, with partial order defined by e ≤ f if and
only if e = ef .

Proof. The relation ≤ defines a partial order relation. Indeed, e = e2, so
e ≤ e. If e ≤ f and f ≤ e, then e = ef = f . Finally, if e ≤ f and f ≤ g, then
e = hf = hg for some idempotent h. Hence, e ≤ g. Furthermore, the product of e
and f in the meet of e and f (their greatest lower bound). Indeed, suppose that
there exists a g such that g ≤ e, g ≤ f and g ≥ ef , then g = gf = g(ef) = ef .
Finally, EX is bounded, since e ≤ 1 for all e. �

For an idempotent e in X, we denote by Xe = (eX)× the group of units of the
monoid eX with unit e. The following result shows that these ‘maximal subgroups’
form a partition of X.

Theorem 4. Every commutative inverse monoid X can be partitioned as

X =
⊔
e∈EX

Xe .

In particular, x ∈ Xe if only if e is the unique idempotent power of x.

Proof. Let e = xn be the unique idempotent power of x in X. Firstly, note
that x is an element of eX. This follows by repeatedly applying the fact that,
because X is an inverse monoid, there exists a y such that x = y x2. Indeed, after n
iterations, one gets x = yn−1 e. Since xn−1 x = e, the element x also has an inverse
in eX. That is, x ∈ Xe. It follows that X is equal to the union of the groups Xe.
Hence, it suffices to show that these groups are distinct. If x is an element of Xe,
then there exists an n such that xn = e. Indeed, Xe is a finite Abelian group so its
exponent is finite. The element e is unique, because every group contains exactly
one idempotent element. �
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Theorem 4 can be taken a step further by noting that the groups corresponding
to idempotent elements e ≤ f are connected by injective group homomorphisms
Xf → Xe given by x 7→ ex. The product of x and y in X can then be interpreted
as follows. First, determine the idempotent powers e and f corresponding to x
and y respectively. The product xy is equal to the product of (ef)x = fx and
(ef) y = ey in the group attached to the meet ef of e and f . Every finite bounded
meet-semilattice can be obtained as the set of idempotents of a commutative inverse
monoid in this way, and conversely.

Example 3 (Groups). If X is a group, then its unit is the only idempotent
element. This means that, for x and y in X, the inequality x ≤ y is equivalent to
x = y.

Example 4 (Boolean lattice). Let X = Fnq with Fq a finite field and coordinate-
wise multiplication as the binary operation. The semilattice of idempotents EX is
isomorphic to Fn2 with bitwise-and or equivalently the semilattice of the subsets
of a set on n elements, with set intersection as the meet operation. The groups
attached to the elements of this lattice are products of F×q and the trivial group
{0} with 0 as its unit. For example, the group corresponding to the idempotent
element (1, 1, 0, . . . , 0) is F×q × F×q × {0} × · · · × {0}.

4.2. Characters. Theorem 4 implies the Clifford-Munn-Ponizovskiĭ correspon-
dence for the characters of X. This is a special case of a more general result in the
representation theory of monoids.

Theorem 5. Let X be a finite commutative inverse monoid. Every character
χ : X → k of X is an extension of a group character ψ : Xe → k with e an
idempotent of X, as follows: for all x in Xf with f an idempotent of X, we have

χ(x) =

{
ψ(ex) if e ≤ f ,

0 else ,

Furthermore, different group characters lead to different characters of X.

Proof. The idea of the construction is that χ is a monoid homomorphism on
every group Xf , that additionally preserves the meet operation. For x in Xf and
y in Xg, note that the idempotent power of xy is the meet fg. Hence,

χ(xy) =

{
ψ(exy) = ψ(ex)ψ(ey) if e ≤ fg ,

0 else .

Since fg is the greatest lower bound on f and g, the condition e ≤ fg is equivalent
to e ≤ f and e ≤ g. This implies that χ(xy) = χ(x)χ(y). Finally, χ(1) = 1 because
e ≤ 1 for all idempotents e and ψ(e) = 1 for all group characters ψ of Xe. �

The characters of X themselves form a commutative inverse monoid X̂ with
binary operation defined by pointwise multiplication. For two idempotent charac-
ters χ and ψ, we again define χ ≤ ψ if and only if χ = χψ. Suppose χ extends the
trivial character of Xe and ψ the trivial character of Xf . The condition χ = χψ is
equivalent to equality between the following two sets (the corresponding supports):{

g ∈ EX | e ≤ g
}
=
{
g ∈ EX | e ≤ g and f ≤ g

}
.

This is the case if and only if e ≥ f . In other words, EX̂ is isomorphic to the dual
poset of EX .
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4.3. Lattice structure. Due to the duality between X and X̂, the meet-
semilattice EX can be given the structure of a lattice. Indeed, the join e ∨ f of
idempotent elements e and f can be defined as the idempotent corresponding to
the meet of the trivial characters of the groups Xe and Xf . In fact, it is true in
general that every finite bounded meet-semilattice is also a join-semilattice.

5. Fourier transformation

The Fourier transformation on k[X] is the change-of-basis transformation from
the standard basis to the joint eigenvector basis {bχ | χ ∈ X̂} from Section 3. To
avoid the need to choose an arbitrary identification between X and X̂, we define
the Fourier transformation as follows.

Definition 1 (Fourier transformation). Let X be a finite commutative inverse
monoid with dual X̂. Let {bχ | χ ∈ X̂} be the dual of the character basis of kX .
The Fourier transformation on k[X] is the linear map FX : k[X] → k[X̂] with

FX(bχ) = δχ .

The inverse-adjoint F−∨X : kX → kX̂ of FX will occasionally be referred to as the
Fourier transformation on kX .

Theorem 5 allows to give an explicit formula for the characters of any commu-
tative inverse monoid. This in turn leads to an explicit formula for û = FX u:

ûχ = bχ(u) =
∑
x∈X

χ(x)ux .

The formula for F−∨X is not as simple, unless X is a group. In that case, the
basis vectors bχ are given by bχ =

∑
x∈X χ(x) δx/|X| and v(χ) = v(bχ) then gives

a similar formula. Any formula for bχ is also equivalent to a ‘Fourier inversion
formula’, since

ux =
∑
χ∈X̂

δx(bχ) ûχ .

5.1. Fourier inversion formula. To obtain a formula for the inverse Fourier
transformation, we will invert FX on each of the groups Xe using the Fourier inver-
sion formula for groups, and then combine these formulae using Möbius inversion
on the poset X. The formula for the Fourier transformation is

ûχ =
∑
e∈EX

∑
x∈Xe

χ(x)ux .

For y in X, let X̂y denote the set of monoid characters extending the group char-
acters of Xy = Xf with f the unique idempotent power of y. Fourier inversion on
the group Xy gives

1

|Xy|
∑
χ∈X̂y

ûχ/χ(y) =
∑
e∈EX

∑
x∈Xe

ux
1

|Xy|
∑
χ∈X̂y

χ(x)/χ(y) .

It holds that χ(x) = 0 unless e ≤ f . Furthermore, if e ≤ f , then

1

|Xy|
∑
χ∈X̂y

χ(x)/χ(y) =

{
1 if y = ex ,

0 else .
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By definition e ≤ f and y = ex is equivalent to x ≤ y. Hence, we obtain
1

|Xy|
∑
χ∈X̂y

ûχ/χ(y) =
∑
y≥x

ux .

The remaining challenge is to invert this sum. This can achieved using the Möbius
inversion formula. This a generalization of the inclusion-exclusion principle.

Theorem 6 (Möbius inversion). Let P be a finite partially ordered set and k
a field. There exists a function µ : P ×P → k such that if two functions f : P → k
and g : P → k satisfy

g(x) =
∑
y∈P
y≥x

f(y) ,

then they also satisfy
f(x) =

∑
y∈P
y≥x

µ(x, y)g(y) .

The function µ is called the Möbius function of P and satisfies the recurrence
relation µ(x, y) = −

∑
x≤z<y µ(x, z) with µ(x, x) = 1.

Let µ be the Möbius function of X. Applying Theorem 6 yields the following
Fourier inversion formula, generalizing the usual formula for groups:

ux =
∑
y≥x

µ(x, y)

|Xy|
∑
χ∈X̂y

ûχ/χ(y) .

As a special case of this formula, we obtain an expression for bχ = F−1X δχ. If χ is
the extension of a character of Xe, then

bχ =
1

|Xe|
∑
y∈Xe

1

χ(y)

∑
x≤y

µ(x, y) δx .

5.2. Fourier transformation of linear maps. If T : k[X] → k[Y ] is a linear
map, then its Fourier transformation is the linear map

FY T F−1X : k[X̂] → k[Ŷ ] .

By duality, the definition for linear maps between kY and kX is analogous. For
cryptanalysis, the Fourier transformation of the pushforward and pullback op-
erators are of particular importance. Indeed, recall that the evaluation of one-
dimensional properties defined by a basis vector and a dual basis vector is

bψ
(
T Fbχ

)
= δψ

(
FY T F F−1X δχ

)
= BF

ψ,χ .

The properties of BF correspond precisely to the ‘propagation rules’ of our crypt-
analytic theory. Some of these properties have nothing to do with the Fourier
transformation. They are the functorial properties mentioned above. In particular,
if F = Fr ◦ · · · ◦ F2 ◦ F1, then

BF = BFr · · ·BF2BF1 .

If F(x) = (F1(x1),F2(x2), . . . ,Fn(xn)), then

BF = BF1 ⊗BF2 ⊗ · · · ⊗BFn .
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For the latter expression the tensor product needs to be chosen appropriately. More
precisely, one needs to choose an isomorphism between the dual of X1 ⊕ · · · ⊕Xn

and X̂1 ⊕ · · · ⊕ X̂n. The following theorem summarizes some properties that are
specific to the Fourier transformation. These correspond to ‘propagation rules’, in
particular the standard propagation rules of linear cryptanalysis are a consequence.

Theorem 7. Let X and Y be commutative inverse monoids. The Fourier
transformation of the pushforward operator has the following properties:

(1) If F(x) = m · x with m in X, then

BF
χ,ψ =

{
χ(m) if χ = ψ ,

0 else .

(2) If F : X → Y is a monoid homomorphism, then

BF
χ,ψ =

{
1 if ψ = χ ◦ F ,
0 else .

(3) In particular, if F : X ⊕X → X with F((x, y)) = x · y, then

BF
χ,(ψ1,ψ2)

=

{
1 if χ = ψ1 = ψ2 ,

0 else .

(4) In particular, if F : X → X ⊕X with F(x) = (x, x), then

BF
(χ1,χ2),ψ

=

{
1 if ψ = χ1χ2 ,

0 else .

Proof. The first property is by definition. Indeed T F = Tm and the ‘Fourier
basis’ was constructed precisely to jointly diagonalize these matrices. The eigenval-
ues were computed in Theorem 3. The last two properties follow from the second.
For the second property, note that ψ ◦ F is itself a character, so

BF
χ,ψ = bχ

(
T Fbψ

)
=
(
T F∨

bχ
)
bψ = bχ◦F(bψ) .

The result follows by duality of the basis vectors. �

For completeness, we mention an explicit formula for the coordinates of BF in
the standard basis, though this is rarely useful (one might advise to never use it):

BF
χ,ψ = bχ

(
T Fbψ

)
=

1

|Xe|
∑
y∈Xe

1

ψ(y)

∑
x≤y

µ(x, y)χ(F(x)) ,

assuming ψ extends a character of Xe.

6. Multidimensional properties

Let X be a finite commutative inverse monoid. Following the example of mul-
tiple linear cryptanalysis, we want to study properties (U, V ) of the type

U = Span
{
δx | x ∈M ⊂ X

}
V = Span

{
bχ | χ ∈ N ⊂ Ŷ

}
,

where M and N are sets of characters. If M and N are in fact submonoids,
then U and V are related to certain partitions of X̂ and Y respectively. This can



6. MULTIDIMENSIONAL PROPERTIES 13

be understood without calculations from general principles (coalgebra and algebra
structure) that we will not discuss here. Instead, we give a more direct argument
based on an isomorphism between M and a quotient of X̂. For the following
theorem, we introduce the shorthand notation

bS =
∑
χ∈S

bχ ,

for a set of characters S.

Theorem 8. Let M be a submonoid of X, and ∼ an equivalence relation on X̂
defined by χ ∼ ψ if and only if χ(x) = ψ(x) for all x in M . We have the following
equality of subspaces:

Span
{
δx
∣∣ x ∈M

}
,= Span

{
b[χ]

∣∣ [χ] ∈ X̂/ ∼
}

where [χ] is an equivalence class in X̂/ ∼ with representative element χ.

Proof. The first space is included in the second, because bχ(δx) = bψ(δx)
whenever χ ∼ ψ. That is, the first space only contains vectors whose Fourier
transformation has coordinates that are constant on the equivalence classes defined
by ∼. To complete the proof, we show that the spaces are equal by proving that the
dimension of the first space is |X̂/ ∼ |. This follows from the isomorphism induced
by the monoid homomorphism

X̂ → M̂

χ 7→ χ|M ,

where χ|M is the restriction of M to χ. �

As a first supplement to the above theorem, we have the identity

b[χ] =
∑
x∈M

δx
(
b[χ]
)
δx =

∣∣[χ]∣∣ ∑
x∈M

δx
(
bχ
)
δx ,

where the value of δx(bχ) can be computed from the explicit formula for bχ. There
is a similar identity in the reverse direction:

δx =
∑

[χ]∈X̂/∼

b[χ]
(
δx
)
/|[χ]| b[χ] =

∑
[χ]∈X̂/∼

χ(x) b[χ] .

For the subspace V , we have the following dual theorem. The proof is based on the
same ideas.

Theorem 9. Let N be a submonoid of X̂, and ∼ an equivalence relation on X
defined by x ∼ y if and only if χ(x) = χ(y) for all χ in N . We have the following
equality of subspaces:

Span
{
bχ
∣∣ χ ∈ N

}
= Span

{
δ[x]

∣∣ [x] ∈ X/ ∼
}
,

where [x] is an equivalence class in X/ ∼ with representative element x.

Proof. The first space is included in the second, because it only includes func-
tions that are constant on equivalence classes. Indeed, bχ(δx) = bχ(δy) whenever
x ∼ y. To show that the spaces are equal, it is now sufficient to prove that the
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dimension of the first space is |X/ ∼ |. This follows from the isomorphism induced
by the following monoid homomorphism:

X → N̂

x 7→ evx ,

where evx : N → k is the evaluation character defined by evx(χ) = χ(x). The kernel
of this map is the congruence relation ∼, so N̂ ∼= X/ ∼ by the first isomorphism
theorem for monoids. It follows that |N | = |X/ ∼ |. �

Like for Theorem 8, we give two supplements to Theorem 9. Firstly,

δ[x] =
∑
χ∈N

δ[x]
(
bχ
)
/|[x]| bχ =

∑
χ∈N

δx(bχ) b
χ .

For the reverse direction, we have

bχ =
∑

[x]∈X/∼

bχ
(
δx) δ

[x] =
∑

[x]∈X/∼

|[x]|χ(x) δ[x] .

There are results dual to Theorem 8 and Theorem 9 for quotient spaces. In this
case one obtains an equality between two quotients of k[X] (or kX) by distinct
subspaces. This too follows from general considerations about the Hopf algebra
structures on k[X] and kX .

7. Places of fields

As mentioned in Section 2, cryptanalysis is generally concerned with estimation
of evaluations of properties, as exact calculations are rarely feasible. This raises
the question of what estimation means in this context. This requires the notion of
absolute value function. A field with an absolute value is called a valued field.

Definition 2 (Absolute value). Let k be a field. An absolute value on k is a
real-valued function | · | : k → R on k such that

(1) For all x in k, |x| ≥ 0 with equality if and only if x = 0.
(2) The function | · | is multiplicative: for all x and y in k, |xy| = |x| |y|.
(3) The triangle-inequality holds: for all x and y in k, |x+ y| ≤ |x|+ |y|.

Furthermore, if the strong triangle-inequality |x+y| ≤ max{|x|, |y|} holds, then | · |
is called a non-Archimidean or ultrametric absolute value. Otherwise, | · | is called
Archimidean.

The most obvious example of a nontrivial absolute value function is perhaps
the standard absolute value on Q, namely |x| = x if x ≥ 0 and |x| = −x otherwise.
The following example gives infinitely many other important examples.

Example 5. Let p be a prime. Every nonzero rational number x can be written
as x = pe (a/b) with a and b integers indivisible by p. Let |x|p = p−e and |0|p = 0.
For example, |10|2 = 1/2. The function x 7→ |x|p is a non-Archimidean absolute
value on Q. It is called the p-adic absolute value.

If k is a valued field, the decomposition into one-dimensional trails can be
turned into the principle of dominant trails, which is familiar from the case of
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linear cryptanalysis (with k = R or k = C):

BF
χr+1,χ1

=
∑
χ∈Λ

r∏
i=1

BFi
χi+1,χi︸ ︷︷ ︸

estimate

+
∑

χ∈Ω\Λ

r∏
i=1

BFi
χi+1,χi︸ ︷︷ ︸

error ε

,

where Ω is the set of all trails and Λ the set of ‘dominant trails’. The idea is that
|ε| is small, so that the dominant trails provide a good estimate for the evaluation
of the property.

If we want to develop a theory similar to linear cryptanalysis, we have to choose
an absolute value function. It turns out that if k is an extension of Q, then the
number of options is limited up to equivalence. Two absolute values | · | and | · |′
are called equivalent if there exists a positive real number t such that for all x in k,

|x|′ = |x|t .
Equivalently, the metrics defined by | · | and | · |′ determine the same topology on
k. A place is an equivalence class of absolute value functions. The places of Q are
classified by Ostrowski’s theorem, which we state without proof.

Theorem 10 (Ostrowski). Up to equivalence, the only nontrivial absolute value
functions on Q are the ordinary absolute value function | · | and, for every prime
number p, the p-adic absolute value functions | · |p.

For extensions of k there are more choices, but when restricted to Q they must
be equivalent to one of the options listed in Theorem 10. In general, for a number
field, one can show that the ultrametric absolute value functions correspond to the
prime ideals of its ring of algebraic integers. For this reason, the place corresponding
to the ordinary absolute value is sometimes called the ‘prime at ∞’.

Once an absolute value on k is fixed, it is often more convenient to work in
the metric completion of k by this absolute value. In the case of Q, the metric
completion with respect to the ordinary absolute value is of course the field of real
numbers R. The completion with respect to the p-adic absolute value gives the field
of p-adic numbers, which will be discussed in more detail in the next lecture. The
fields R and Qp are called local fields. A common approach in number theory is that
it is often possible to understand the ‘global’ solutions of Diophantine equations
by finding local obstructions. As the next section discusses in more detail, an
important motivation for ultrametric integral cryptanalysis is that this philosophy
is also of interest in the context of cryptanalysis.

8. Motivation for ultrametric integral cryptanalysis

Many symmetric-key primitives can be described in terms of a limited number
of commutative ring operations. For example, Fn2 with exclusive-or and bitwise-and
is a commutative ring and both of these operations are the natural building blocks
of many cryptographic primitives. The theory of linear cryptanalysis maximally
simplifies addition, making this a fundamental method to analyze such ciphers.
If (and only if) the multiplicative structure of the ring is that of a commutative
inverse monoid, then we can do the same for multiplication. Furthermore, note
that the theory of linear cryptanalysis is traditionally developed over R or C. That
is, following the philosophy sketched in Section 7, it focuses on local aspects near
the prime at infinity. By choosing another absolute value, we can similarly localize
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at other primes. Ultrametric integral cryptanalysis is the unique cryptanalytic
technique that combines these two aspects:

(1) It simplifies multiplication rather than addition. It turns out that, as a
result of this, it generalizes the algebraic approach to integral cryptanal-
ysis.

(2) It uses as the absolute value function the ultrametric p-adic absolute value.
In particular, the theory is described over an extension of Qp.

Large parts of the theory of ultrametric integral cryptanalysis are immediate con-
sequences of the general results for commutative inverse monoids that we have
developed in this lecture. However, to be able to use it in applications, the more
specific aspects of ultrametric integral cryptanalysis are essential. These will be
worked out in the next lecture.
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Ultrametric integral cryptanalysis
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1. Introduction

In the first lecture, we developed the general principles of cryptanalysis over
finite commutative inverse monoids. It was shown that in this case, there exists a
basis that diagonalizes the pushforward operator of all multiplication maps. This
led to a theory of one-dimensional trails following the example of linear cryptanal-
ysis. The goal of this second lecture is to develop ultrametric integral cryptanalysis
as a special case of this theory. Ultrametric integral cryptanalysis applies to rings
that are also a commutative inverse monoid with respect to multiplication. Like
linear cryptanalysis, it is a local theory — but one works over an extension of the
field of p-adic numbers rather than over the complex numbers. This lecture builds
on the contents of the first lecture, and additionally assumes some familiarity with
integral cryptanalysis. To understand some proofs in this lecture, some familiarity
with field extensions and commutative rings may be helpful.

2. Rings with commutative inverse monoid structure

Like for commutative inverse monoids, idempotent elements play a central role
in the structure of rings. Two idempotent elements e and f are called orthogonal if
ef = 0. In a ring, if e is an idempotent, then so is 1− e. Furthermore, e and 1− e
are orthogonal.

2.1. Products of fields. The following theorem shows that rings with a mul-
tiplicative commutative inverse monoid structure are isomorphic to products of
finite fields. The statement of the theorem requires some terminology related to
posets. A nonzero element a of a poset with zero is called an atom if there does not
exist a nonzero element e such that e < a. The set of atoms of X will be denoted
by AX .

Example 6. The atoms of F3 × F3 are (0, 1) and (1, 0).

Theorem 11. If a finite ring X is a commutative inverse monoid with multi-
plication, then there exist finite fields Fq1 , . . . ,Fqn such that

X ∼= Fq1 × Fq2 × · · · × Fqn .

More precisely, for every atom a of EX , the set aX is a finite field with unit a and
the map x 7→

(
a x | a ∈ AX

)
is a ring isomorphism between X and

∏
a∈AX

aX.

Proof. For all elements of the poset EX of idempotent elements, there exists
an atom smaller than or equal to it. This is true in any finite poset that contains
a zero element. We first show that every nonzero idempotent element e can be
written as a sum of atoms. There exists an atom a1 ≤ e. Since the element 1− a1
is idempotent, the element e is equal to the following sum of idempotent elements:

e = a1 e+ (1− a1) e = a1 + (e− a1) ,

where we use a1 ≤ e and e − a1 ≤ e. The element e − a1 is idempotent, and
there again exists an atom smaller than it. This process can be iterated until
the remaining idempotent element is zero, which must happen eventually since
e− a1 < e and X is finite. Hence, there exist atoms a1, . . . , an such that

e = a1 + a2 + · · ·+ an .
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In the first lecture, it was shown that every nonzero element x of X belongs to
exactly one group Xe with unit equal to a nonzero idempotent element e. Hence,
there exists an e such that x = ex. That is,

xe = x a1 + x a2 + · · ·+ x an .

The values x ai are either zero or contained in Xai since e ai = ai. In general, for
all x in X, there exist elements xa in aX for all a in AX , such that

x =
∑
a∈AX

xa .

The values xa are uniquely determined by x, because any two atoms a 6= b satisfy
ab = 0 (their greatest lower bound is zero). Hence, xa = a x so that xa is uniquely
determined.

As mentioned in the theorem statement, aX can be given a ring structure when
a is an atom. Indeed, it is sufficient to show that if x, y ∈ aX, then x − y ∈ aX.
This is true because x − y = xa − ya = (x − y)a. In fact, aX is a field because
if x ∈ aX, then either x = 0 or x ∈ Xa. This is because there are no nonzero
idempotent elements below a. This leads to the homomorphism

X →
∏
a∈AX

aX

x 7→
(
a x | a ∈ AX

)
.

By the uniqueness of the decomposition of x above, this is an isomorphism. �

Theorem 11 implies that, without loss of generality, we can assume from now
on that X is a product of finite fields. However, this does not mean that the
monoid structure can be assumed to be a product of fields in all applications. The
reason for this is that the cipher and its decomposition into rounds are generally
considered to be input data, whereas the theory is only invariant up to post- and
pre-compositions of all functions with the isomorphism and its inverse. Most of the
results in this lecture will be stated for the general case, but the proofs will assume
a product of fields. The final step of inserting ring isomorphisms in the right places
will usually be implicit.

Remark 1. It is also possible to prove Theorem 11 using the Chinese remainder
theorem for commutative rings. For every atom a, the set (1−a)X is an ideal of X.
Due to the orthogonality of atoms, these ideals are pairwise coprime1. The Chinese
remainder theorem gives an isomorphism

X ∼=
∏
a∈AX

X/(1− a)X .

However, one can show that the ideals (1−a)X are maximal, so that the quotients
X/(1− a)X are fields. The isomorphism that is obtained in this way is essentially
the same as the one in Theorem 11, since aX ∼= X/(1− a)X.

1If a and b are atoms, then 1− a+ a(1− b) = 1.
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2.2. Rings of characteristic p. For ultrametric integral cryptanalysis, we
will for the most part assume that X is a ring of prime characteristic p. This
assumption is not necessary from a technical point of view, but it leads to better
results in applications and nicer theoretical properties. By Theorem 11, up to ring
isomorphism,

X = Fpf1 × Fpf2 × · · · × Fpfn .

Furthermore, up to ring isomorphism we can assume that all Fpf1 , . . . ,Fpfn are
subfields of some field Fq of characteristic p. For a tuple v = (v1, . . . , vn) with vi in{
0, 1, . . . , pfi − 1

}
, it is convenient to have the following notation:

xv =

n∏
i=1

xvii ,

for x = (x1, . . . , xn). By composing with the relevant ring isomorphism, this nota-
tion extends to any X of prime characteristic p. It holds that (xy)v = xv yv.

3. Field of p-adic numbers

Let | · |p denote the p-adic absolute value on Q. At the end of the first lecture,
it was mentioned that the field of p-adic numbers Qp is defined as the metric
completion of Q with respect to | · |p. Below, we develop an alternative definition
that is more algebraic. It will be shown at the end of this section that this definition
coincides with the metric completion. The algebraic definition has the advantage
that lends itself better to calculations, and in particular to the lifting lemma of
Hensel.

3.1. Algebraic definition. The p-adic integers Zp are defined as the following
inverse limit (this concept is explained below):

Zp = lim
←−

Z/pnZ .

Explicitly, Zp consists of all sequences x = (x1, x2, . . .) with xn in Z/pnZ and such
that xn ≡ xn+1 (mod pn). Addition and multiplication are defined coordinate-
wise, and this makes Zp into an integral domain. The p-adic absolute value is
defined as |x|p = p−m, where m ≥ 1 is the smallest integer such that xm 6= 0. The
integer m is called the p-adic valuation ordp x of x.

The p-adic numbers are then defined as the field of fractions of Zp. Using
Hensel lifting (see below), it can be shown that if u ∈ Zp with |u|p = 1, then also
u−1 ∈ Zp. This implies that every element x of Qp can be written as pm u, where u
is a unit of Zp and m is an integer. The p-adic absolute value of x is equal to p−m.

Since every element of Zp is a unit times a power of p, the only ideals of Zp
are of the form pmZp. This means that Zp has a unique maximal ideal pZp (such
a ring is called a discrete valuation ring). From the inverse limit definition of Zp,
it is clear that Zp/pZp is a finite field of order p.

3.2. Hensel lifting. Hensel’s lifting lemma is an essential result for both the
theory of p-adic numbers and its applications. In practice, the proof of this theorem
is just as important as its statement, at it provides a way to calculate with p-adic
integers (for example computing inverses, computing square roots, …).
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Theorem 12 (Hensel lemma). Let f(t) be a polynomial over Zp with derivative
f ′(t). If x1 in Z/pZ satisfies f(x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p), then there
exists a unique p-adic integer x such that f(x) = 0 and x ≡ x1 (mod p).

Proof. The proof is a p-adic analogue of Newton’s method. Let f(t) =∑n
i=0 cit

i. Using the binomium, we obtain the following p-adic analogue of a first-
order Taylor approximation:

f(t+ hp) ≡
n∑
i=0

ci (t+ hp)i ≡ f(t) + hp f ′(t) (mod p2) .

Since f(x1) ≡ 0 (mod p), there exists an integer λ such that
f(x1 + hp) ≡ p

(
λ+ hf ′(x1)

)
(mod p2) .

The choice h ≡ −λ/f ′(x1) (mod p) leads to a unique x2 in Z/p2Z such that we
have f(x2) ≡ 0 (mod p2). The same argument can now be applied to

f(t+ hp2) ≡ f(t) + hp2f ′(t) (mod p3) .

Repeating this process yields an infinite sequence (x1, x2, . . .) such that xn ∈ Z/pnZ
with f(xn) ≡ 0 (mod pn). This infinite sequence is a p-adic integer. �

As a first application of Hensel lifting, we establish the following result.

Theorem 13. For every x in F×p , the p-adic integers Zp contain a unique
(p− 1)st root of unity τ(x) such that τ(x) ≡ x (mod p).

Proof. Let f(t) = tp−1 − 1. The derivative is f ′(t) = (p − 1) tp−2, which is
nonzero for nonzero t. The order of the multiplicative group F×p is p − 1, so the
result follows by applying Theorem 12. �

The function τ : Fp → Qp that maps zero to zero and x in F×p to the corre-
sponding root of unity is called the Teichmüller character of Fp. This terminology
is justified because τ is a monoid homomorphism.

3.3. Unramified extensions of Qp. To construct all the multiplicative char-
acters of our ring X, it will in general be necessary to add some roots of unity to
Qp. Let ζ be a primitive (q − 1)st root of unity, with q a power of p. The p-adic
absolute value can be extended to the extension field Qp(ζ) by defining

(1) |x|p = n

√
|NQp(ζ)(x)|p ,

where NQp(ζ) is the absolute field norm and n = [Qp(ζ) : Qp]. Intuitively, this is the
right choice because the norm function is multiplicative and absolute values must
be invariant under field automorphisms.

Lemma 4. Let ζ be a primitive (q−1)st root of unity, with q a power of a prime
p. The only absolute value on Qp(ζ) that extends the p-adic absolute value of Qp is
given by (1).

Proof sketch. There are two claims to be verified: that (1) defines an abso-
lute value, and that it is unique. For the first claim, we give an incomplete argument
because the proof of the ultrametric triangle inequality is rather technical.

It is not difficult to check that | · |p is multiplicative and |x|p = 0 if and only if
x = 0. The ultrametric triangle inequality can be proven by expressing the norm
as the determinant of a matrix over Qp, but we will not work out the details.
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To show that (1) is the unique absolute value on Qp(ζ) extending the p-adic
absolute value, note that | · |p is also a norm on the finite-dimensional Qp-vector
space Qp(ζ). However, all such norms are equivalent. Hence, if | · |′p is a second
absolute value function on Qp(ζ), then there exist absolute positive constants c1
and c2 such that for all x in Qp(ζ)

c1 |x|p ≤ |x|′p ≤ c2 |x|p .

An application of the ‘power trick’ then shows that there is only one such norm.
That is, for all n ≥ 1, it holds that

c1 |xn|p ≤ |xn|′p ≤ c2 |xn|p .

Taking nth roots and the limit n→ ∞ implies that |x|′p = |x|p for all x in Qp(ζ). �

Hensel’s lifting lemma can be generalized to Qp(ζ). To do this, we need some
results about the algebraic structure of Qp(ζ).

Lemma 5. Let ζ be a primitive (q − 1)st root of unity, with q a power of a
prime p. The ring of integers of Qp(ζ) is equal to Zp[ζ]. Furthermore, pZp[ζ] is a
maximal ideal of Zp[ζ].

Proof. Since the norm of an integral element of Qp(ζ) is always a p-adic
integer, the integers of Qp(ζ) also satisfy |x|p ≤ 1. It is clear that Zp[ζ] is contained
in the ring of integers of Qp(ζ). The converse is also true, because if x =

∑n−1
i=0 aiζ

i

is an integer of Qp(ζ) with |ai|p > 1 for i in I ⊆ {0, 1, . . . , n − 1}, then
∑
i∈I aiζ

i

would be an integral element with absolute value > 1. Finally, to see that the ideal
generated by p is maximal, note that

Zp[ζ]/pZp[ζ] ∼= Fp(ζ) .

Since ζ is a primitive (q−1)st root of unity, Fp(ζ) is a field with q elements. Hence,
pZp[ζ] is a maximal ideal. �

The extension Qp(ζ)/Qp is called unramified because the ideal pZp does not
factor nontrivially as a product of prime ideals. Extensions in which pZp factors
nontrivially are called ramified, but we will not discuss them in this lecture as they
are only necessary to define the additive Fourier transformation over a p-adic field.

The field Fq = Zp[ζ]/pZp[ζ] that came up in the proof of Lemma 5 is called
the residue field of Qp(ζ). Hensel’s lifting lemma carries over to polynomials over
Zp[ζ]. In this case we lift a solution in the residue field Fq to a solution in Zp[ζ].
The proof is exactly the same as for Theorem 12.

Theorem 14 (Hensel lemma). Let ζ be a primitive (q− 1)st root of unity, with
q a power of a prime p, and let f(t) be a polynomial over Zp[ζ] with derivative
f ′(t). If x1 in Zp[ζ]/pZp[ζ] satisfies f(x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p),
then there exists a unique x in Zp[ζ] such that f(x) = 0 and x ≡ x1 (mod p).

Theorem 14 implies that there exists a Teichmüller character τ : Fq → Qp(ζ)
such that τ(0) = 0 and τ(x) is the unique (q − 1)st root of unity such that τ(x) ≡
x (mod p). This character will be the starting point to construct the set of all
characters of X in the next section.
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3.4. Metric definition. The purpose of this section is to show that the above
definition of Qp coincides (up to isometry) with the metric completion of Q with
respect to the p-adic absolute value. Since this is only necessary to motivate ultra-
metric integral cryptanalysis, this section may be skipped.

A sequence x1, x2, . . . is called a Cauchy sequence if for every real ε ≥ 0,
there exists an integer N ≥ 1 such that for all integers n,m ≥ N , it holds that
|xn − xm|p < ε. Two Cauchy sequences x1, x2, . . . and y1, y2, . . . are said to be
equivalent if their distance is zero:

lim
n→∞

|xn − yn|p = 0 .

It follows from standard properties of limits that this indeed defines an equivalence
relation on the set of Cauchy sequences. The completion of Q with respect to | · |p
can be defined as the set of these equivalence classes of Cauchy sequences. The
absolute value of a Cauchy sequence x1, x2, . . . is defined as its limiting absolute
value limn→∞ |xn|p.

The construction of the metric completion can be simplified because of the
fact that the image of | · |p is a discrete set. In particular, for any Cauchy sequence
x1, . . . , xn, we construct a particular subsequence y1, . . . , yn that is equivalent to the
original sequence. Let y1 = xN1 with N1 the smallest N1 such that |xn − xm| < 1
for all n,m ≥ N . Then choose y2 = xN2

with N2 ≥ N1 in the same way with
ε = 1/p. The subsequence constructed in this way with ε = 1, 1/p, 1/p2, . . . has the
property that limn→∞ |xn−yn|p = 0. Furthermore, it satisfies |yn+1−yn|p < 1/pn.
This implies that there exist rational numbers c1, . . . , cn such that

yn =
n∑
i=0

ci p
i .

The sequence can always be rewritten as a sequence

sn =

n∑
i=−m

ci p
i ,

with m ≥ 0 and c−m, . . . , cn ∈ {0, 1, . . . , p− 1}. In other words, we can think of a
p-adic number x as a convergent series

(2) x =

∞∑
i=−m

ci p
i .

For m = 0, every sequence (s1, s2, . . . , sn) is an element of the inverse limit Zp.
Conversely, every element of the inverse limit gives rise to a unique convergent
series with m = 0. Furthermore, every p-adic number is of the form pm u with u a
unit of Zp. Hence, this gives an isometric isomorphism of fields.

4. Ultrametric integral change-of-basis

We now define ultrametric integral cryptanalysis for a ring X with commutative
inverse monoid structure and prime characteristic. The local field of the theory
will be chosen as an extension of Qp, where p is the characteristic of X. As far
as generalities are concerned, this is not required — nor is it required that the
characteristic of X is prime. For completeness, we briefly mention what happens if
these assumptions do not hold:
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• If the characteristic of X is not prime, then it makes sense to consider
all of its prime divisors p. For the most part, one then ends up ignoring
the factors of X with characteristic different from p (in other words, a
localization of X). Depending on the prime numbers, it can be necessary
to work in a ramified extension of Qp.

• If p does not divide the characteristic of X, then most of the specific
results below cannot be rescued in a straightforward way.

Since there are currently no clear applications of the general case, we do not develop
it any further here.

4.1. Characters of X. Let X = Fpf1 ×Fpf2 ×· · ·×Fpfn so that Fpf1 , . . . ,Fpfn
are subfields of a larger field Fq. There is a primitive (q − 1)st root of unity ζq−1
so that k = Qp(ζq−1) has residue field Fq. For every tuple v = (v1, . . . , vn) with vi
in {0, 1, . . . , pfi − 1}, we have a character of X defined by

χ : X → k

x 7→ τ(xv) .

Several important properties that will be presented in this lecture and the next do
not depend on the precise value of v but only on its Hamming weight wt(v) or what
we will call its p-weight wtp(v). The latter is defined as follows:

wtp(v) =

n∑
i=1

sp(vi) ,

where sp(vi) is the sum of the base-p digits of vi. It will be convenient to define
wt(χ) = wt(v) and wtp(χ) = wtp(v). With this notation, the Hamming weight is
the rank function of the lattice of idempotents of X̂.

The ‘digit sum’ function sp can be tricky to work with. The following lemma
lists two of its properties that we will use later.

Lemma 6. Let p be a positive integer and q a non-negative power of p. The
digit sum function sp satisfies the following properties:

(1) For all non-negative integers x and y,

sp(x+ y) = sp(x) + sp(y)− (p− 1) c(x, y) ,

where c(x, y) is the number of carries when x and y are added in base p.
(2) For all non-negative integers x < q and k, sp(x) ≤ sp(x+ k(q − 1)).

Proof. The first property follows from the relation between the digits of the
integers z = x+ y, x and y:

zi = xi + yi + ci−1 − p ci ,

where ci is the ith carry bit. In particular ci = 0 and if z has a total of n digits,
then cd = 0. Summing these relations, we obtain
d∑
i=1

zi =

d∑
i=1

xi + yi + ci−1 − pci = sp(x) + sp(y)− (p− 1)

d∑
i=1

ci +

d∑
i=1

(ci − ci−1) .

The last sum is telescoping and sums to cd − c0 = 0. Hence, the result follows.
The second property follows from the inequality sp(x − y) ≥ sp(x) − sp(y) for all
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non-negative integers x and y ≤ x. Indeed, since x = (x − y) + y, this inequality
follows from the first property. Hence, sp(x+ k(q − 1)) is lower bounded by

sp(x+ k(q − 1)) ≥ sp(x+ kq)− sp(k) = sp(qx) + sp(qk)− sp(k) = sp(x) .

Here, the first equality follows from the assumption x < q. �

The following inequality is a useful consequence of Lemma 6:
wtp(χ1 · · ·χl) ≤ wtp(χ1) + · · ·+wtp(χl) .

Note that this really relies on both parts of the lemma.

4.2. Eigenvector basis. As discussed in the first lecture, the functions bχ = χ
define a suitable basis for the vector space kX . To construct the dual basis vectors
bχ, the Fourier inversion formula can be used. It is sufficient to construct them
for Fpe , since the dual basis vectors of X are obtained as the tensor products of a
submonoid of these. By Fourier inversion, if χ 6= 1, then

bχ =
1

pe − 1

∑
x∈ F×

pe

χ(1/x) δx +

{
−δ0 if χ(x) = τ(xp

e−1) for all x in Fpe ,
0 else .

For χ = 1, we have bχ = δ0. The explicit formula for the basis vectors is rarely
necessary. The basis vectors for k[X] are then of the form

bχ1
⊗ · · · ⊗ bχn

,

with χi a character of Fpfi .

4.3. Fourier transformation. The change-of-basis transformation will be
denoted by U : k[X] → k[X̂]. To avoid confusion with the additive Fourier trans-
formation, it will be called the ultrametric integral change-of-basis map. The main
properties of U and its dual U −∨ have already been described in the first lecture.
The following property is analogous to the unitarity of the Fourier transformation.
In particular, the p-adic analogue of the Euclidean norm is the maximum norm∥∥∥∥∥∑

x∈X
ax δx

∥∥∥∥∥ = max
x∈X

|ax|p .

The dual norm on kX is given by essentially the same formula.

Theorem 15. The matrix representation of the ultrametric change-of-basis
map U : k[X] → k[X̂] with respect to the standard bases of k[X] and k[X̂] is
unimodular. In particular, U is an isometry with respect to the p-adic maximum
norm.

Proof. An invertible matrix over k is unimodular if its coordinates and the
coordinates of its inverse are integer elements of k. The coordinates of the matrix
representation of U are given by

δχ
(
U δx

)
= χ(x) .

Since |χ(x)|p ≤ 1, it is an integer element of k. Similarly, for the inverse we have

δx
(
U −1 δχ

)
= δx

(
bχ
)
.

By the explicit formulas above, it is clear that |δx
(
bχ
)
|p ≤ 1. Finally, note that any

unimodular matrix defines an isometry with respect to the p-adic maximum norm.
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Indeed, if the coordinates of U are integer elements of k, then ‖U x‖ ≤ ‖x‖ for all
x. Likewise, ‖U −1 x‖ ≤ ‖x‖. It follows that ‖U ‖ = 1. �

It is useful to compute some examples of the matrix representation of U for
small primes p and n = 1. For p ≤ 3, no p-adic numbers apart from those also in
Q appear.

Example 7. Let X = F2. The rows of U correspond to the basis functions
x 7→ 1 and x 7→ τ(x), where τ(0) = 0 and τ(1) = 1. The columns of U −1

correspond to the basis vectors δ0 and δ1 − δ0. Hence,

U =

[
1 1
0 1

]
and U −1 =

[
1 −1
0 1

]
.

Note that all coordinates of U and U −1 are integers in Q ↪→ Q2.

Example 8. Let X = F5. The rows of U correspond to the basis functions
x 7→ τ(x)v, where τ(0) = 0, τ(1) = 1, τ(2) = i, τ(3) = −i, τ(4) = −1. Here, i
the unique 5-adic square root of −1 so that i ≡ 2 (mod 2). The first few digits are
given by

i = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + · · ·
The columns of U −1 correspond to the basis vectors δ0, (δ1− iδ2+ iδ3− δ4)/4, and
so on. Hence,

U =


1 1 1 1 1
0 1 i −i −1
0 1 −1 −1 1
0 1 −i i −1
0 1 1 1 1

 and U −1 =
1

4


4 0 0 0 −4
0 1 1 1 1
0 −i −1 i 1
0 i −1 −i 1
0 −1 1 −1 1

 .
Note that all coordinates of U and U −1 are integers in Q5 (but not in Q or Q(i)).

4.4. Integral cryptanalysis. An important property of ultrametric integral
cryptanalysis is that if all quantities are reduced modulo p, then one obtains inte-
gral cryptanalysis over the residue field Fq. In particular, if q = 2 and X = Fn2 , then
we obtain the description of integral cryptanalysis using the dual pair of ‘precursor’
and ‘monomial’ bases (leading to algebraic transition matrices [2]). Integral crypt-
analysis with q > 2 has not been fully developed in the literature, but as shown
below it is reasonable to define it as the modulo p reduction of ultrametric integral
cryptanalysis.

Example 9. If X = Fn2 , then the characters are of the form x 7→ τ(xv) with
v in {0, 1}n. The image of τ is just {0, 1} in this case. Modulo two, the basis
functions bχ are given by monomials χ(x) = xv. For n = 1, the basis vectors bχ are
equal to δ0 and δ0 + δ1 modulo two. Hence, for general n,

bχ ≡
∑
x4v

δx (mod 2) .

This is the indicator function of the predecessor set of v. If S is a subset of Fn2 ,
then up to identifying F̂n2 and Fn2 ,

U δS ≡ δU(S) (mod 2) ,

where U(S) is the parity set of S [4].
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The concept of parity sets does not extend well beyond F2. The reason is that
knowing the support of U δS is in general not sufficient to recover S. It just happens
to be the case that elements of the free vector space over F2 can be identified with
sets. The division property [5] describes the weight of the elements in the parity
set. This idea can be generalized to ultrametric integral cryptanalysis by saying
that a set S has the 1/ε-division property of order k if∣∣δχ(U δS

)∣∣
p
≤ ε ,

for all characters χ with wtp(χ) < k. An equivalent definition is given below. A
set then has the p-division property of order k if all monomials of p-degree strictly
less than k sum to zero on the set.

Definition 3 (pl division property). A multiset S with elements from X sat-
isfies the pl division property of order k if∑

x∈S
χ(x) ≡ 0 (mod pl) ,

for all characters χ of X with wtp(χ) < k.

Although we will not use Definition 3 directly in applications, it will be use-
ful for the analysis of generic constructions (functions of bounded degree, Feistel
ciphers, ...) to characterize a set of trails by a sequence of upper bounds on the
weights of the characters that they are defined on. In some cases, however, keeping
track the p-weights is not sufficient. Furthermore, to analyze specific primitives, it
is usually important to keep track of more precise information.

5. Ultrametric integral transition matrices

The ultrametric integral transition matrix of a function F is defined as
AF = U T F U −1 .

Since U is a Fourier transformation in the sense of the first lecture, all the properties
that were mentioned there carry over. After mentioning a few examples of what
these properties lead to, some results specific to ultrametric integral transition
matrices will be given.

5.1. Basic properties. As discussed in the first lecture, multiplication by a
constant m in X corresponds to a diagonal matrix with entries χ(m) in row and
column χ. If F is a monoid homomorphism, then AF

χ,ψ = 1 if ψ = χ ◦ F and
zero otherwise. Applying this to multiplication and copy operations led to the
propagation rules illustrated below.

χ ψ

χψ

1

(a) Copy.

·

χ χ

χ

1

(b) Multiplication.

Figure 1. Propagation rules for copy and multiplication opera-
tions.



28 2. ULTRAMETRIC INTEGRAL CRYPTANALYSIS

Other important classes of monoid homomorphisms are permutations of the
factors of X (for Fn2 these are the bit-permutations) and power maps. If F : x 7→ xd

is power map on a finite field, then

AF
χ,ψ =

{
1 if ψ = χd

0 else .

In the next lecture, we will use this propagation rule in the form wtp(ψ) = wtp(χ
d).

There are two useful upper bounds related to this:

wtp(χ
d) ≤ d wtp(χ)

wtp(χ
d) ≤ sp(d) wtp(χ) .

The first upper bound follows from wtp(χ
d) = wtp(χ · · ·χ) ≤ wtp(χ) + · · ·wtp(χ).

For the second upper bound, note that there exist non-negative integers u ≤ q − 1

and k such that u+ k(q − 1) = vd. Let d =
∑l−1
i=0 di p

i. By Lemma 6, it holds that

sp(u) ≤ sp(vd) = sp
(
v d0 + v d1 p+ · · ·+ v dl−1 p

l−1) ≤ sp(v)

l−1∑
i=0

sp(di p
i) .

The result follows from sp(di p
i) = di. The bound wtp(χ

d) ≤ sp(d) wtp(χ) is better
than wtp(χ

d) ≤ d wtp(χ), but both will be important for the discussion of the
Ax-Katz theorem in the next lecture.

5.2. Reduction modulo p. It was shown in Theorem 15 that the coordinates
of the matrices U and U −1 are p-adic integers. This means that the same is true
for AF = U T F U −1, and consequently it makes sense to reduce AF modulo p.
This yields a matrix that is closely related to the algebraic normal form of F.

The algebraic normal form of a function f : X → Fq is a unique interpolating
‘polynomial’ in the ring Fq[x1, . . . , xn]/(xp

f1

1 − x1, . . . , x
pfn
n − xn). In the following

theorem, the notation Fv refers to the map x 7→ Fv(x).

Theorem 16. Let F : X → Y be a function with ultrametric integral transition
matrix AF. For all characters ψ(x) = τ(xu) and χ(x) = τ(xv), the value AF

χ,ψ is
congruent modulo p to the coefficient of xu in the algebraic normal form of Fv.

Proof. By the definition of AF, it holds that

AF∨
δχ =

∑
ψ

AF∨

ψ,χ δ
ψ =

∑
ψ

AF
χ,ψ δ

ψ .

Evaluating at δx and reducing modulo p yields

Fv(x) =
∑
ψ∈X̂

ψ : x 7→ τ(xu)

AF
χ,ψ x

u (mod p) .

Hence, we have obtained an interpolating polynomial for Fv. However, this polyno-
mial is unique modulo the ideal generated by xfi − x, so its coefficients correspond
to those of the algebraic normal form. �
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5.3. Unimodularity. In linear cryptanalysis, correlation matrices are uni-
tary. More generally, correlation matrices of injections are isometries with respect
to the Euclidean norm. The following theorem is the ultrametric integral analogue
of this result.

Theorem 17. If F is an injection, then AF is an isometry with respect to the
p-adic maximum norm. Furthermore, if F is invertible, then AF is unimodular.

Proof. If F is an injection, then T F is an isometry because T F v and v have
the same nonzero coordinates. Since U and U −1 are isometries, it follows that
AF is an isometry. The result about unimodularity follows by a similar argument,
using the fact that T F is unimodular if and only if it is invertible. �

6. Addition

In this section we analyze the ultrametric integral properties of addition in
the ring X. As we will see in the next lecture, the analysis of most generic con-
structions essentially reduces to understanding addition. The absolute values of
the ultrametric integral transition matrix for addition can be obtained from Stick-
elberger’s theorem on Gauss sums. However, here we follow a more down-to-earth
approach based on Kummer’s theorem on binomial coefficients.

6.1. Lifting using Frobenius. In our analysis of addition we will reduce AF

modulo a power of p. To do this, we will rely on Lemma 7.

Lemma 7. Let x and y be integer elements of k, and n a positive integer. If
x ≡ y (mod pn), then xp ≡ yp (mod pn+1).

Proof. If x ≡ y (mod pn), then y = x+mpn for some integer element m of
k. By the binomial formula, we have

yp = (x+mpn)p =

p∑
i=0

(
p

i

)
xp−i (mpn)i .

All terms on the right-hand side are divisible by pn+1, except the term for i = 0.
This term is equal to xp, so the result follows. �

An interesting consequence of Lemma 7 is the formula τ(x) = limn→∞ xq
n .

6.2. Kummer’s theorem. Kummer’s theorem gives a formula for the p-adic
valuation of binomial coefficients in terms of the sp function. We will deduce it from
Legendre’s theorem, which does the same as Kummer’s theorem but for factorials.

Lemma 8 (Legendre). For all non-negative integers n,

ordp n! =
n− sp(n)

p− 1
.

Proof. Generalizing the argument used in the proof of Lemma 6, we can see
that

sp(i− 1) = sp(i)− 1 + (p− 1) ordp i .

Indeed, the number of times we borrow is equal to the number of trailing zeros
in the base p expansion of i, which equals ordp i. Since ordp n! = ordp n + · · · +
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ordp 2 + ordp 1, summing up the above equation for i in {1, 2, . . . , n} yields
n∑
i=1

sp(i− 1) =

n∑
i=1

sp(i)− n+ (p− 1) ordp n! .

It follows from this that sp(n)− n+ (p− 1) ordp n! = 0. �

Theorem 18 (Kummer). For all non-negative integers n and m, ordp
(
n
m

)
is

equal to the number of carries when adding m to n−m in base p. That is,

ordp

(
n

m

)
=
sp(m) + sp(n−m)− sp(n)

p− 1
.

Proof. The result follows directly from Legendre’s theorem:

ordp

(
n

m

)
= ordp n!− ordpm!− ordp(n−m)! .

The fact that this is the number of carries when adding m and n − m in base p
follows from the first part of Lemma 6. �

6.3. Addition with two inputs. We will determine only the divisibility of
the coordinates of the ultrametric integral transition matrix for addition — al-
though exact values can be obtained with a little more work.

Theorem 19. Let F : X ×X → X with F(x, y) = x+ y. For all characters χ,
ψ1 and ψ2 of X, we have AF

χ,(ψ1,ψ2)
= 0 unless χ = ψ1 ψ2. If ψ1ψ2 6= 1 then

ordpA
F
ψ1ψ2,(ψ1,ψ2)

≥ wtp(ψ1) + wtp(ψ2)− wtp(ψ1ψ2)

p− 1
.

Proof. It is sufficient to prove the result for X = Fq, since the conclusion then
follows by taking tensor products. Since τ(x+ y) ≡ τ(x)+ τ(y) (mod p), Lemma 7
shows that (

τ(x) + τ(y)
)q ≡ τ(x+ y)q ≡ τ(x+ y) (mod pq) .

To compute the coordinates of AF, we first compute χ ◦ F. If χ(x) = τ(xv), then

χ(F(x, y)) ≡ τ(x+ y)v ≡
(
τ(x) + τ(y)

)qv
(mod pq) .

Expanding the right-hand side using the binomium formula yields the expression

χ(F(x, y)) ≡
qv∑
i=0

(
qv

i

)
τ(x)iτ(y)qv−i (mod pq) .

The functions ωi : x 7→ τ(x)i are characters of X. Hence, we have the following
equality of functions:

T F∨
bχ ≡

qv∑
i=0

(
qv

i

)
bωi ⊗ bωqv−i (mod pq) .

Since AF
χ,ψ =

(
T F∨

bχ
)(
bψ
)
, we can evaluate the above expression in bψ = bψ1 ⊗bψ2 .

The only nonzero terms in the resulting sum are those for which ψ1 = ωi and
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ψ2 = ωqv−i. This means that the sum is zero unless ψ1ψ2 = ωi ωqv−i = ωqv = χ.
For the second part of the result, we continue with the expression

AF
χ,ψ ≡

qv∑
i=0

ωi =ψ1
ωqv−i =ψ2

(
qv

i

)
(mod pq) .

If either ψ1 = 1 or ψ2 = 1, then the sum contains only one term (i = 0 or
i = qv) and the result follows. Hence, we can assume that ψ1 = ωu1 and ψ2 = ωu2

with u1 and u2 in {1, . . . , q − 1} with v = u1 + u2 or v = u1 + u2 − (q − 1). If
ωi = ψ1 and ωqv−i = ψ2, then there exists a non-negative integers k and l such that
i = u1+k(q−1) and qv− i = u2+ l(q−1). Hence, by the second part of Lemma 6,

ordp

(
qv

i

)
=
sp(u1 + k(q − 1)) + sp(u2 + l(q − 1))− sp(v)

p− 1

≥ sp(u1) + sp(u2)− sp(v)

p− 1
.

To summarize, we have shown that ordpA
F
χ,ψ is at least

sp(u1) + sp(u2)− sp(v)

p− 1
=

wtp(ψ1) + wtp(ψ2)− wtp(χ)

p− 1
,

assuming that ψ1ψ2 = χ 6= 1. �

With some additional effort, it can be shown that the inequality in Theorem 19
can in fact be replaced by an equality. IfX is a field of prime order, then Theorem 19
reduces to the following result:

ordpA
F
ψ1ψ2,(ψ1,ψ2)

=

{
1 if u1 + u2 ≥ p

0 else ,

for ψ1 : x 7→ τ(xu1) and ψ1 : x 7→ τ(xu2).

Example 10. For X = F2, the ultrametric integral transition matrix of addi-
tion is [

1 0 0 0
0 1 1 −2

]
.

In this case, divisibility is trivial except in the case wt(ψ1) = wt(ψ2) = 1 For
X = Fn2 the result is the n-fold tensor product of the above, which gives

AF
ψ1ψ2,(ψ1,ψ2)

= (−2)wt(u1∧u2)

for ψ1 : x 7→ τ(xu1) and ψ2 : x 7→ τ(xu2).

Example 11. For X = F4 = F2(α) with α2+α+1 = 0, the ultrametric integral
transition matrix of addition is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 − 4

3 0 0 2
3 0 0 − 4

3 0 0
0 0 1 0 0 2

3 0 0 1 0 0 − 4
3 0 0 − 4

3 0
0 0 0 1 0 0 − 1

3 0 0 − 1
3 0 0 1 0 0 − 4

3

 .
The columns correspond to exponents (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), . . .
Note the difference with addition in the ring F2

2.
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6.4. Addition with a constant. The formula for addition with a constant
is similar to the formula for additions with two inputs. The result is listed in
Theorem 20. The proof is omitted because it is essentially identical to the proof
of Theorem 19. The result is stated for constants t that are nonzero in every
coordinate, because for all other coordinates the corresponding characters must
match to obtain a nonzero correlation.

Theorem 20. Let F : X → X with F(x) = x + t for a constant t in X such
that t1 6= 0, . . . , tn 6= 0. For all characters χ 6= 1 and ψ of X, we have

ordpA
F
χ,ψ =

wtp(ρ) + wtp(ψ)− wtp(χ)

p− 1
.

For X = Fq, the character ρ is defined by ρ(x) = τ(xv−u) if u ≤ v and ρ(x) =
τ(xq−1+v−u) otherwise, where ψ(x) = τ(xu) and χ(x) = τ(xv) and u and v are
in {0, 1, . . . , q − 1}. This extends to products of fields by tensoring, and hence to
arbitrary X isomorphic to a product of fields of characteristic p.

Example 12. For X = F2, the ultrametric integral transition matrix of x 7→
x+ t is [

1 0
τ(t) (−1)t

]
,

where τ(t) is just the representation of t as a {0, 1} integer.

6.5. Jacobi sums. There is an alternative approach to proving Theorems 19
and 20 based on Jacobi sums. For example, let t be a nonzero constant in Fq and
F : x 7→ x+ t. If ψ 6= 1 and ψ is not the character x 7→ τ(xq−1), then

AF
χ,ψ =

1

q − 1

∑
x∈F×

q

χ(x+ t)/ψ(x) =
χ(t)

ψ(−t)
1

q − 1

∑
x∈F×

q

χ(1− x)ψ∗(x)

The sum on the right is called a Jacobi sum and the bound in Theorem 20 is a known
result about such sums. More precisely, Jacobi sums can be expressed in terms of
Gauss sums, whose factorization into prime ideals (in an algebraic number field)
is understood by Stickelberger’s theorem. From the point of view of cryptanalysis,
Gauss sums show up when converting statements about correlations matrices to
statements about ultrametric integral transition matrices and conversely. In other
words, they express the coordinates of a change-of-basis matrix.

Apart from the factorization of Gauss sums into prime ideals, there is also a
more detailed formula for their exact value in the p-adic numbers due to Gross and
Koblitz. This result can also be applied to prove Theorems 19 and 20. Without
giving the details, the Gross-Koblitz formula involves the p-adic gamma function

Γp(n) = (−1)n
∏

1≤i<n
p - i

i .

This is well-defined for integers n and is p-adically continuous, so admits a unique
extension to the p-adic integers. The exact values of the coordinates of the ultra-
metric integral transition matrix of translation can be expressed in terms of the
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p-adic gamma function as follows:

AFχ,ψ = (−1)e
(−p)ν

1− q

e−1∏
i=0

Γp

(
wtq χ

pi

1−q + 1
)

Γp

(
wtq ψpi

1−q + 1
)
Γp

(
wtq ρp

i

1−q + 1
) ,

for F (x) = x+ 1. This can be proven using the Gross-Koblitz formula.

7. Trails

The principle of trails was already discussed in the first lecture. For ultrametric
integral cryptanalysis, it corresponds to the formula

AF
χr+1,χ1

=
∑

χ2,...,χr

r∏
i=1

AFi
χi+1,χi

,

when F = Fr ◦ · · · ◦ F2 ◦ F1. In the context of ultrametric integral cryptanalysis,
trails are mainly used to identify properties with (p-adically) small correlation.
This can be understood as a relaxation of zero-correlation properties, and in fact
the techniques used to find them are conceptually similar.

7.1. Principle of dominant trails. A straightforward but essential conse-
quence of the ultrametric triangle inequality is the following ‘exact’ variant of the
principle of dominant trails. As mentioned above, we will mainly use this result
with Λ = ∅.

Theorem 21 (Dominant trails). Let F = Fr ◦ · · · ◦F2 ◦F1. For all subsets Λ of
the set Ω of all trails from χ1 to χr+1,∣∣∣∣∣AF

χr+1,χ1
−
∑
χ∈Λ

r∏
i=1

AFi
χi+1,χi

∣∣∣∣∣
p

≤ max
χ∈Ω\Λ

∣∣∣∣∣
r∏
i=1

AFi
χi+1,χi

∣∣∣∣∣
p

,

where χ = (χ1, χ2, . . . , χr+1).

Theorem 21 leads to the ‘approximate miss-in-the-middle’ principle: one con-
structs a set of trails in the forward and a backward directions (with correlation
not too small), and shows that they cannot be matched with high correlation. This
approach is convenient for the manual analysis of constructions.

7.2. Application to linear functions. Let F : X → Y be a homomorphism
of the additive groups of X and Y . Such a map can be decomposed as a composition
of three layers:

(1) A layer of copy operations.
(2) A layer of multiplications with various constants.
(3) One or more layers of additions, each between two inputs.

Let us consider a trail (χ1, χ2, χ3, χ4) with nonzero correlation through this network
of three layers. For every copy operation, the weight of the output character (χ, ψ)
is greater than the weight of the input character χψ because wtp(χ) + wtp(ψ) ≥
wtp(χψ). Hence wtp(χ2) ≥ wtp(χ1). Multiplications by constants affect only the
sign of trails, so wtp(χ3) ≥ wtp(χ2). For an addition, the weight of the input
characters (χ, ψ) can be higher than the weight of the output character χψ, but
Theorem 19 shows that if the weight is lower by ∆, then the correlation is divisible
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by ∆/(p − 1). It follows that the correlation of every trail through the addition
layers is divisible by

pd(wtp(χ3)−wtp(χ4))/(p−1)e .

Using the fact that wtp(χ3) ≥ wtp(χ2) ≥ wtp(χ1) shows that

ordpA
F
χ4,χ1

≥
⌈
wtp(χ1)− wtp(χ4)

p− 1

⌉
,

based on the principle of dominant trails. After reduction to the residue field, this
result says that the image of a set with division property of order k under a linear
map still has the division property of order k. In the next lecture, it will be shown
that more complicated constructions can be analyzed in essentially the same way.
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1. Introduction

The basics of ultrametric integral cryptanalysis were developed in the previ-
ous two lectures. This lecture turns to applications, starting with the analysis of
arbitrary functions of a given degree. Cryptanalytic proofs of the Ax-Katz and
Moreno-Moreno theorems will be given. These theorems show that the number of
solutions to a system of polynomial equations over a finite field of characteristic p
is divisible by some power of p depending on the degree of the equations. Further
applications include the analysis of Feistel ciphers. This lecture assumes familiarity
with the contents of the first two lectures, and with basic cryptographic construc-
tions (Feistel ciphers, some concrete primitives) and their integral cryptanalysis in
the Fn2 -case.

2. Input sets and data-complexity

In the applications that follow, we will obtain ‘almost zero-correlation’ approx-
imations for various constructions. That is, we will find pairs (ψ, χ) such that
|AF
χ,ψ|p ≤ ε for some 0 < ε < 1. More generally, we may suppose a one-dimensional

property (u, v) with evaluation ∣∣v(AF u
)∣∣
p
≤ ε .

In practice, we then want to know the minimum amount of data required to exploit
this property. For one-dimensional properties such as (u, v), at most | suppU −1 u|
data is required. This is tight when all nonzero coordinates of U −1 u have the
same p-adic absolute value, as is the case for u = δψ. If ψ extends a character of
the maximal subgroup Xe, then the explicit formula for bψ from Lecture 1 shows
that supp bψ =

⋃
f≤e Xf , where f ranges over all idempotents below e.

Example 13. For X = Fnq , the amount of data required to exploit a property
(bψ, b

χ) with ψ extending a character of eFnq for some idempotent e, is equal to

| supp bψ| =
∑
f≤e

(q − 1)wt(f) = qwt(e) = qwt(ψ) .

Example 13 shows that, if we only use a single approximation, then the data-
complexity is determined by the weight of ψ — although in general, differences in
the size of the factors ofX should be accounted for. However, when multiple approx-
imations are available, the data complexity can sometimes be reduced significantly.
This is analogous (in fact, as discussed below, in a precise way) to data-complexity
reductions for multidimensional zero-correlation linear cryptanalysis.

Completely determining the minimum data-complexity for multiple approxi-
mations would lead us too far from the applications in this lecture, but it is useful
to discuss how multiple approximations are related to divisibility properties for cer-
tain structured input sets. By analogy with multidimensional linear cryptanalysis,
we will consider submonoids of X. As explained in the first lecture, if M ⊂ X is
a submonoid, then the ultrametric integral change-of-basis of the subspace of k[X]
spanned by the elements of M is equal to a subspace spanned by the indicators of
certain equivalence classes of characters:

Span
{
δx | x ∈M

}
= Span

{
b[χ] | [χ] ∈ X̂/ ∼

}
,
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where the equivalence relation ∼ is defined by χ ∼ ψ if and only if χ(x) = ψ(x) for
all x in M . More explicitly, we have

δx =
∑

[χ]∈X̂/∼

χ(x) b[χ] .

This in particular yields the following formula.

Lemma 9. Let M be a submonoid of X and ∼ the equivalence relation defined
above. The coordinates of U δM are constant on the equivalence classes X̂/ ∼.
Furthermore, if χ is a character of X extending a character χe of the group Xe,
then

1

|[χ]|
bχ
(
δM
)
=

{∑
f ≥ e |Mf | if χe ∈M1

e ,

0 else ,

where the sum is over the idempotent elements f of M and Me =M ∩Xf .

Proof. A submonoid of M consists of a sublattice EM of EX , with for each f
in EM , a subgroup Mf of Xf . If f ≥ e, then there is a connecting group homomor-
phism Mf →Me defined by x 7→ ex with kernel of order |Mf |/|Me|. Hence,∑

x∈M
χ(x) =

∑
f≥e

∑
x∈Mf

χe(ex) =
∑
f≥e

|Mf |
|Me|

∑
x∈Me

χe(ex) .

By the orthogonality of group characters, the inner sum is zero unless χe ∈M1
e . �

In the following example, the equivalence relation on the dual of X is trivial,
but it helps to illustrate how Lemma 9 can be used.

Example 14. Take M = X = Fq. The equivalence relation on the characters
of X is given by χ ∼ ψ if and only if χ = ψ. Lemma 9 shows that

bχ
(
δM
)
=


q if χ = 1 ,

q − 1 if χ(x) = τ(xq−1) ,

0 else .

In Section 3, we will use the following consequence of this expression:

δFn
q
=
∑
χ

qn−wt(χ) (q − 1)wt(χ) bχ ,

where the sum is over all idempotent characters. This follows by taking tensor
products, or directly from Lemma 9 with M = X = Fq.

In integral cryptanalysis over F2, the input sets are usually chosen to be of
the form uFn2 , since these correspond to the precursor basis vectors. The following
example shows that if such sets are used for ultrametric integral cryptanalysis,
then one also needs to take into account characters with weight greater than wt(u).
However, the higher the weight, the smaller the contribution of the character.

Example 15. Let X = Fnq and M = uFnq with u an idempotent element.
Let χ = (χ1, . . . , χn) and ψ = (ψ1, . . . , ψn) be characters of Fnq . The equivalence
relation corresponds to χ ∼ ψ if and only if χi = ψi when ui = 1 and χq−1i = ψq−1i
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when ui = 0. In other words, on the positions i with ui = 0, only the idempotent
power of the character χi matters. Lemma 9 yields

δM =
∑
χ≥ψu

qwt(u)−wt(χ)(q − 1)wt(χ) bχ ,

where the sum is over idempotent characters greater than the idempotent character
ψu : x 7→

∏n
i=1 τ(x

ui(q−1)). Indeed,∑
f≥e

|Mf | =
∑
f≥e

(q − 1)wt(f) = qwt(u)−wt(e) (q − 1)wt(e).

This result can also be deduced from the isomorphism uFnq ∼= Fwt(u)
q .

As a warning, note that the lattice of idempotents of a submonoid is not neces-
sarily a Boolean lattice and submonoids are not necessarily subrings. For example,
Fp does not contain any proper subfields but when p − 1 is smooth it has many
submonoids corresponding to subgroups of the cyclic group F×p .

Example 16. Let X = F2
3 and M = {0, 1}2 the submonoid of squares. The

equivalence relation on characters of F3 is defined by the partition {{x 7→ τ(x), x 7→
τ(x2)}, {x 7→ 1}}. Lemma 9 gives

δM =
(
2 bx7→1 + bx 7→τ(x) + bx 7→τ(x2)

)⊗2
= 4 bx 7→1 + 2

(
bx 7→τ(x2) + bx 7→τ(x2

2)

)
+ 2

(
bx 7→τ(x1) + bx 7→τ(x2

1)

)
+
(
bx7→τ(x1x2) + bx 7→τ(x2

1x2) + bx 7→τ(x1x2
2)
+ bx7→τ(x2

1x
2
2)

)
,

where the terms between each pair of parentheses correspond to equivalent char-
acters. In particular, the above expression can also be written as δM = 4b[x 7→1] +
2b[x 7→τ(x1)] + 2b[x 7→τ(x2)] + b[x 7→τ(x1x2)]. The support is full in this case, since the
annihilator of {1} ⊂ F×3 is the group of all characters of F×3 .

The results about multidimensional properties from Lecture 1 also imply that
if the output characters form a submonoid of the dual of X, then one obtains
a divisibility property for a ‘projection function’ (in the sense of Wagner) to a set
X/ ∼. This is useful for other reasons but does not help reduce the data-complexity,
except when divisibility is so high that statistical methods become available.

3. Functions with prescribed degree

In the following, F : X → Y will be a function with prescribed degree. As we
will see, there is more than one notion of ‘degree’ that is relevant to the analysis
of such functions. For the Ax-Katz theorem discussed below, traditionally X = Fnq
and Y = Fmq , but the result generalizes to other products of fields of common
characteristic p. By cryptanalytic standards, arbitrary functions of prescribed de-
gree are not particularly interesting because they do not provide a specific enough
model for most cryptographic primitives. However, there are several reasons why
discussing this class of functions is particularly important in the context of ultra-
metric integral cryptanalysis:

• In many cases, it is reasonably accurate to model a component of a larger
construction (such as a Feistel cipher or an AES-like cipher) by an arbi-
trary function with the same degree.
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• It is often useful to compare properties of a concrete function with their
counterparts for a generic function of the same degree.

Nevertheless, the primary motivation in this section is the proof of some theorems
that are of interest to pure mathematics (the Ax-Katz theorem and the Moreno-
Moreno theorem). The proof will be based on the analysis of ultrametric integral
trails in a generic function of given degree.

3.1. Ax-Katz theorem. The Ax-Katz theorem has a rather long history,
going back to a theorem of Chevalley and Warning that states that the number of
solutions to a system of equations of degrees d1, . . . , dm in n variables over a finite
field of characteristic p, is divisible by p if d1 + . . . + dm < n. This result is not
particularly deep or difficult1, but it has an interesting consequence: a homogeneous
system of equations in n variables has a nontrivial solution whenever d1+. . .+dm <
n. Ax, and later Katz in a more general form, generalized the Chevalley-Warning
theorem as follows.

Theorem 22 (Ax-Katz). The number of solutions to a system of equations
f1, . . . , fm in n variables over Fq satisfies

ordq N(f1, . . . , fm) ≥
⌈
n−

∑m
i=1 deg fi

max1≤i≤n deg fi

⌉
.

In particular, the number of solutions to a system of m equations of degree d in n
variables is divisible by qdn/de−m.

The Ax-Katz theorem can be understood as a p-adic analogue of the Riemann
hypothesis for local zeta functions, as it equivalent to an upper bound on the p-adic
absolute value of the poles and zeros of the local zeta function of the variety cut
out by the given equations.

A variant of the Ax-Katz theorem that is sometimes more precise was proven
by Moreno and Moreno. Their bound depends on the p-degree of a polyonomial,
which for a monomial is defined by

degp x
i1
1 · · ·xinn =

n∑
k=1

sp(ik) .

The proof is based on rewriting the system of equations as a system of equations
over Fp, and degp f is precisely the algebraic degree of f as a polynomial over Fp.

Theorem 23 (Moreno-Moreno). The number of solutions to a system of equa-
tions f1, . . . , fm in n variables over Fq with q = pe satisfies

ordpN(f1, . . . , fm) ≥
⌈
e

(
n−

∑m
i=1 degp fi

max1≤i≤n degp fi

)⌉
.

In particular, the number of solutions to a system of m equations of p-degree d in
n variables is divisible by pden/de−em.

As discussed before, the class of functions with prescribed degree is too broad,
so Theorems 22 and 23 are results with few immediate cryptanalytic applications.

1It follows from the fact that
∑

x∈Fq xi = 0 whenever i < q − 1.
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3.2. Ultrametric integral cryptanalysis and systems of equations. To
prove the Ax-Katz theorem using ultrametric integral cryptanalysis, we first express
it in terms of the properties of a function. The solutions of the system of equations
are the preimages of 0 for the function F : Fnq → Fmq with Fi = fi. Since adding
a constant does not affect the degree, this means the Ax-Katz theorem can be
rephrased as a result about the number of preimages of a function with prescribed
degree. This can be expressed as a cryptanalytic property, and hence in terms of
ultrametric integral approximations, as made explicit by the following lemma.

Lemma 10. The number of preimages N of (0, 0, . . . , 0) under F : Fnq → Fmq
satisfies

|N |p ≤ max
ψ,χ

qwt(ψ)−n∣∣AF
χ,ψ

∣∣
p
,

where the maximum is over all idempotent multiplicative characters of Fnq .

Proof. The number of preimages N is equal to

N = δ0
(
T F δFn

q

)
=
∑
χ

(−1)wt(χ) δχ
(
AF U δFn

q

)
,

where the sum is over all idempotent characters χ. By the result from Example 14,

U δFn
q
=
∑
ψ

qn−wt(ψ) (q − 1)wt(ψ) δψ ,

where the sum is over all idempotent characters ψ. Hence, wt(ψ) is the number
of ψi equal to x 7→ τ(xq−1) when ψ = (ψ1, . . . , ψn). It follows that the number of
preimages is

N =
∑
χ,ψ

(−1)wt(χ) qn−wt(ψ) (q − 1)wt(ψ)AF
χ,ψ .

The result follows by taking the p-adic absolute value and applying the ultrametric
triangle inequality. �

Based on Lemma 10, the proof of the Ax-Katz and Moreno-Moreno theorems
should fall out of a lower bound on ordpA

F
χ,ψ. In fact, it is enough to have such a

bound for idempotent characters χ and ψ — but for cryptanalytic applications, it
is useful to have a bound for all coordinates anyway.

3.3. Analysis of trails using p-weights. The following theorem gives gener-
ically tight upper bounds on the p-adic absolute values of the coordinates of AF.
It will be shown below that Theorem 23 follows from this result in the case with
a uniform bound on the p-degree of the functions f1, . . . , fm. The more detailed
case can be proven in exactly the same way, but this will be left to the reader.
Theorem 22 follows from a different upper bound that requires a separate analysis
and is discussed in the next section.

Theorem 24. Let F : Fnq → Fmq be a function of p-degree d. For all multiplica-
tive characters ψ and χ, it holds that

ordpA
F
χ,ψ ≥

⌈
wtp(ψ)/d− wtp(χ)

p− 1

⌉
.
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·
·

·
·

· · ·

·
·

...

(·)i1 (·)i2 (·)il (·)j1 (·)j2 (·)jl (·)k1 (·)k2 (·)kl

wtp(χ)

wtp(χ) + (p− 1) ν

d(wtp(χ) + (p− 1) ν)

wtp(ψ) ≤ d(wtp(χ) + (p− 1) ν)

· · · · · · · · ·

Figure 1. Ultrametric integral trails for a function with p-degree
d.

Proof. Each of the functions Fi can be written as a sum of one or more mono-
mials with p-degree d, each scaled by some constant coefficient. This construction
is depicted in Figure 1. Note that the constant term can be realized by adding a
degree-zero monomial.

To estimate the correlation AF
χ,ψ of the approximation (ψ, χ), we will analyze

trails through m copies of the construction in Figure 1. The basic strategy will
be to upper bound the maximum p-weight of a character at the beginning of each
trail with correlation p−ν . Since the upper bounds that we derive are linear in the
p-weight of the output character, it is sufficient to analyze one of the functions Fi
that is of highest degree.

As discussed in the second lecture, if the total p-weight of the input characters
of an addition exceeds the p-weight of the output character by νi(p− 1), then the
corresponding approximation has absolute correlation p−νi . This holds for every
addition, so the p-weight at the input of the addition layer is at most wtp(χ)+(p−
1) ν1 + (p− 1) ν2 + · · · ≤ wtp(χ) + (p− 1) ν. Multiplication by a constant does not
affect the p-weight, so the weight at the output of the layer of monomials is at most
wtp(χ) + (p − 1) ν. Every monomial function is a monoid homomorphism and, as
we saw in the second lecture, increases the p-weight from output to input character
by a factor of at most d. Hence, the p-weight of any character at the input of the
layer of monomials in a trail is at most d(wtp(χ) + (p − 1) ν). Since the p-weight
cannot increase further under copy operations, every trail with absolute correlation
p−ν or higher must satisfy

wtp(ψ) ≤ d
(
wtp(χ) + (p− 1) ν

)
.

Rearranging to isolate ν, which is an integer, yields

ν ≥
⌈
wtp(ψ)/d− wtp(χ)

p− 1

⌉
.

This holds for every trail, so by the principle of dominant trails ordpA
F
χ,ψ ≥ ν. �

Proving the Moreno-Moreno theorem (Theorem 23) is now a matter of applying
Lemma 10 to the result of Theorem 24. In fact, Theorem 24 itself is more important
for applications to cryptanalysis. For example, it will be useful in Section 4.

Proof of Theorem 23 with equal degrees. Applying Lemma 10 to The-
orem 24 shows that the number of solutions N satisfies (the minimum is over all
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idempotent characters, and achieved for χ : x 7→ τ(
∏m
i=1 x

q−1
i ))

ordpN ≥ min
ψ
e
(
n− wt(ψ)

)
+

⌈
wtp(ψ)/d−me(p− 1)

p− 1

⌉
≥ min

ψ
e
(
n−m− wt(ψ)) +

⌈
wtp(ψ)/d

p− 1

⌉
,

with q = pe. The character ψ is idempotent, so wtp(ψ) = e (p − 1)wt(ψ). The
minimum is achieved for wt(ψ) = n and hence

ordpN ≥
⌈en
d

⌉
− em .

This is precisely the Moreno-Moreno theorem with equal degrees. �

3.4. Analysis of trails using q-weights. The bound in Theorem 23 is best
possible for functions of fixed p-degree, but not for all functions of fixed polynomial
degree. The issue is that, in the proof of Theorem 24, we only kept track of the
p-weight of characters in trails. However, this may be suboptimal for a function
with given polynomial degree d. Below, we give another formula for ordpA

F
χ,ψ in

terms of the degrees of characters ψ and χ. The degree of a character χ : x 7→ τ(xv)
with v1, . . . , vn in {0, 1, . . . , q−1} is equal to

∑n
i=1 vi. By analogy with the p-weight

of characters, we will instead use the term ‘q-weight’:

wtq(χ) =

n∑
i=1

sq(vi) ,

where sq(vi) = vi since 0 ≤ vi < q. A similar definition can be given for other
powers of p, and would lead to further variants of the Ax-Katz theorem — but we
will not go as far in these lecture notes.

By keeping track of q-weights of characters rather than p-weights, we will prove
the following variant of Theorem 24. The proof follows the same strategy, but is
slightly more technical because we will need to keep track of not only the q-weight
of the characters, but also the q-weight of their pth powers.

Theorem 25. Let F : Fnq → Fmq be a function of degree d. For all multiplicative
characters ψ and χ, it holds that

ordpA
F
χ,ψ ≥

e−1∑
i=0

⌈
wtq(ψ

pi)/d− wtq(χ
pi)

q − 1

⌉
,

for q = pe.

The reason why Theorem 25 involves pth powers of χ and ψ is related to the
ultrametric integral properties of addition. Let ψ1 : x 7→ τ(xu1), ψ2 : x 7→ τ(xu2)
and χ = ψ1ψ2 : x 7→ τ(xv) be characters of Fq. As shown in the previous lecture,

A�
χ,(ψ1,ψ2)

=
wtp(ψ1) + wtp(ψ2)− wtp(χ)

p− 1
,

and this is equal to the number of carries when adding u1 and u2 in base p. If there
is overflow, then we also count the number of carries introduced by the overflow2

after reducing modulo q−1. It is possible to use the q-weight of characters to detect
one of these carries: if there is no carry in the addition of the highest digits, then

2Since u1 and u2 are both less than q − 1, this introduces at most one additional carry.
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v = u1+u2. Otherwise, if there is a carry in this position, then v = u1+u2−(q−1).
Equivalently, u1 + u2 − v ≤ ν0(q− 1) with ν0 in {0, 1} indicating the occurrence of
a carry. Since taking a pth power of a character rotates the digits in its exponent
to the left, we have

wtq(ψ
pi

1 ) + wtq(ψ
pi

2 )− wtq(χ
pi) ≤ νi (q − 1) ,

where νi = 1 if there is a carry when adding the digits in position i and νi = 0
otherwise. Hence, the total number of carries ν satisfies ν = ν0 + ν1 + . . . + νe−1.
This provides an alternative characterization of the properties of addition, this time
in terms of q-weights.

Proof of Theorem 25. Like the proof of Theorem 24, we analyze the ul-
trametric integral trails through m copies of the construction shown in Figure 2.
The addition layer may also include an addition by a constant. Like in the proof

·
·

·
·

· · ·

·
·

...

(·)i1 (·)i2 (·)il (·)j1 (·)j2 (·)jl (·)k1 (·)k2 (·)kl

wtq(χ
pi)

wtq(χ
pi) + (q − 1) νi

d(wtq(χ
pi) + (q − 1) νi)

wtq(ψ
pi) ≤ d(wtq(χ

pi) + (q − 1) νi)

· · · · · · · · ·

Figure 2. Ultrametric integral trails for a function with degree d.

of Theorem 23, it is sufficient to analyze one of the functions Fi that is of highest
degree. The strategy is to keep track of the q-weight of the pi th power of the
characters in a trail, for each i in {0, 1, . . . , e− 1}.

For the addition layer, the q-weight of the pi th power of the input character
can be larger by (q− 1) νi, for some integer νi (for one addition, νi is either zero or
one). That is, the q-weight at the output of the layer of monomials is at most

wtq(χ
pi) + (q − 1) νi .

Every degree d monomial is a morphism of monoids, and increases the q-weight by
at most a factor of d (from output to input). The q-weight of the input character
of a copy layer is always greater than the q-weight of the output character, so

wtq(ψ
pi) ≤ d (wtq(χ

pi) + (q − 1) νi) .

The absolute correlation of the trail is then at most p−ν , where ν = ν0 + ν1 + · · ·+
νe−1. Rearranging the inequality above yields

νi ≥

⌈
wtq(ψ

pi)/d− wtq(χ
pi)

q − 1

⌉
.

Summing this inequality for i = 0, 1, . . . , e − 1 yields the result. Note that it is
quite important that we rearrange before computing the sum, because we want to
account for the fact that each νi is an integer. �

To prove Theorem 22, we can apply Lemma 10 to Theorem 25 as follows.
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Proof of Theorem 22 with equal degrees. By Lemma 10 and Theorem 25,
the number of solutionsN satisfies (the minimum is achieved for χ : x 7→ τ(

∏m
i=1 x

q−1
i ))

ordpN ≥ min
ψ
e
(
n− wt(ψ)

)
+

e−1∑
i=0

⌈
wtq(ψ

pi)/d−m(q − 1)

q − 1

⌉

≥ min
ψ
e
(
n−m− wt(ψ)) + e

⌈
wt(ψ)

d

⌉
,

where ψp
i

= ψ and wtq(ψ) = (q − 1) wt(ψ) because the minimum is over all
idempotent characters ψ. The minimum is achieved for wt(ψ) = n. Hence,

ordq N ≥
⌈n
d

⌉
−m.

This is precisely the Ax-Katz theorem with equal degrees. �

The proof of Theorem 25 (and Theorem 22 as a corollary) is a good example of
the fact that it is often necessary to keep track of more detailed information than
just the p-weights of the characters in a trail.

4. Feistel ciphers over Fq
As a case study, we analyze Feistel ciphers on F2

q. The analysis will not be
complete: for the most part, we restrict to generic Feistel constructions with a
round function of prescribed p-degree and p a small prime number. For other
cases, the general principles are the same but additional work is required. For tight
bounds on concrete constructions, it is difficult to avoid computer assistance.

4.1. Analysis of trails. Figure 3 depicts a single round F : F2
q → F2

q of a
Feistel cipher with round function G : Fq → Fq. As already mentioned, we focus here
on the case that both branches are elements of the same finite field Fq. The analysis
of the more general case is similar, although the results can be quite different.

G

ψ1 ψ2

ρ2ρ1

χ1 χ2

Figure 3. An ultrametric integral trail through one Feistel round.

Let (ψ, χ) be an approximation of F with ψ = (ψ1, ψ2) and χ = (χ1, χ2)
multiplicative characters. Based on the properties of addition and copy operations,
the characters ρ1 and ρ2 shown in Figure 3 must satisfy

χ2 = ψ1ρ1 ,

ψ2 = χ1ρ2 .
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In most cases, these relations uniquely determine ρ1 and ρ2. Suppose that χ2 6= 1
and ψ2 6= 1. If in addition ψ1 6= χ2 and ψ2 6= χ1, then ρ1 = ψ∗1χ2 and ρ2 = χ∗1ψ2

with ψ∗1 the (pseudo)inverse of ψ1 and likewise for χ∗1. Hence,

ordpA
F
χ,ψ =

wtp(ψ1) + wtp(ψ
∗
1χ2)− wtp(χ2)

p− 1
+ ordpA

G
ψ∗

1χ2, χ∗
1ψ2

.

However, if ψ1 = χ2 or ψ2 = χ1, then a separate analysis is necessary because in
this case ρ1 or ρ2 may be the trivial character. In particular, if ψ1 = χ2, then there
could be an additional trail with nonzero correlation for ρ1 = 1. However, if ρ1 = 1,
then also ρ2 = 1. This is possible only if ψ2 = χ1. Hence, if both ψ1 = χ2 and
ψ2 = χ1, then (since the absolute correlation of the trail with ρ1 = 1 is greatest)

ordpA
F
χ,ψ =

wtp(ψ1)− wtp(χ2)

p− 1
= 0 .

If ψ2 = χ1 but ψ1 6= χ2, then ρ2 = 1 but ρ2 6= 1 so the bound becomes

ordpA
F
χ,ψ ≥ wtp(ψ1) + wtp(ψ

∗
1χ2)− wtp(χ2)

p− 1
+min

{
ordpA

G
ψ∗

1χ2, 1, ordpA
G
ψ∗

1χ2, χ∗
1ψ2

}
.

Assuming the two trails do not cancel, the above inequality becomes an equality if

ordpA
G
ψ∗

1χ2, 1 ≥ ordpA
G
ψ∗

1χ2, χ∗
1ψ2

,

with χ∗1ψ2 : x 7→ τ(xq−1) in this case. These two conditions are generically satisfied.
Finally, we consider the case that χ2 = 1 or ψ2 = 1. The formulae from

above are still valid, except that some zero-correlation cases must be ruled out. In
particular, if ψ2 = 1, then we must also have χ1 = 1. Similarly, if χ2 = 1, then
we must have ψ1 = 1 and ρ1 = 1. The latter condition implies that ψ2 = χ1. To
summarize, we have the following result.

Theorem 26. Let F : F2
q → F2

q be one round of a Feistel cipher with round
function G : Fq → Fq and let (ψ, χ) be a pair of multiplicative characters of F2

q such
that ψ = (ψ1, ψ2) and χ = (χ1, χ2). If ψ2 = 1 ∧ χ1 6= 1 or χ2 = 1 ∧ (ψ1 6= 1 ∨ ψ2 6=
χ1), then AF

χ,ψ = 0. Otherwise, it holds that

ordpA
F
χ,ψ ≥


0 if ψ2 = χ1 and ψ1 = χ2 ,

ν +min
{
ordpA

G
ψ∗

1χ2, 1
, ordpA

G
ψ∗

1χ2, χ∗
1ψ2

}
if ψ2 = χ1 and ψ1 6= χ2 ,

ν + ordpA
G
ψ∗

1χ2, χ∗
1ψ2

else ,

where ν is given by

ν =
wtp(ψ1) + wtp(ψ

∗
1χ2)− wtp(χ2)

p− 1
.

Theorem 26 can be used to automate the ultrametric integral analysis of Feistel
ciphers, provided that one has a model for the round function G. Possible strategies
for representing this as an MILP, SAT or SMT problem will not be discussed here,
and we focus instead on the generic case. An example of a concrete construction is
discussed in Section 4.5.
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4.2. Generic case using p-weights. Theorem 26 provides a model for one
round of a Feistel cipher, but except using significant computer-assistance, it is not
so easy to use. If G : Fq → Fq is any function with p-degree d, then we might hope
to upper bound |AF

χ,ψ|p entirely in terms of the p-weights of the characters χ1, χ2,
ψ1 and ψ2. By Theorem 24,

(3) ordpA
G
ρ1,ρ2 ≥ max

{
0,

⌈
wtp(ρ2)/d− wtp(ρ1)

p− 1

⌉}
.

To express everything in terms of p-weights, it is sufficient to determine the mini-
mum of wtp(λ∗1λ2) over all characters λ1 and λ2 with prescribed p-weight. Indeed,
the valuation bound is minimized when wtp(χ

∗
1ψ2) and wtp(ψ

∗
1χ2) are minimal.

In the former case, this follows from the fact that the bound in Theorem 26 is
increasing in wtp(χ

∗
1ψ2). In the latter case, ν is increasing in wtp(ψ

∗
1χ2), but

ordpA
G
ψ∗

1χ2,χ∗
1ψ2

is not. However, an increase in wtp(ψ
∗
1χ2) is guaranteed to increase

the integer ν but due to the ceiling function ordpA
G
ψ∗

1χ2,χ∗
1ψ2

can increase at most
by the same amount. Hence, the overall lower bound is increasing in wtp(ψ

∗
1χ2).

Lemma 11. The minimum of wtp(λ
∗
1λ2) over all multiplicative characters λ1

and λ2 of Fq with prescribed p-weights w1 = wtp(λ1) and w2 = wtp(λ2) is given by

min
λ1,λ2

wtp(λ
∗
1λ2) =



0 if w2 = 0 and w1 = 0 ,

e(p− 1) if w2 = 0 and w1 = e(p− 1) ,

e(p− 1)− w1 if w2 = 0 and w1 6∈ {0, e(p− 1)} ,
w2 if w2 6= 0 and w1 = e(p− 1) ,

w2 − w1 if w2 > w1 ,

r if w2 ≤ w1 6= e(p− 1) ,

,

with the unique integer in {1, . . . , p− 1} such that r ≡ w2 − w1 (mod p− 1).

Proof sketch. The first four cases can be verified by plugging in the appro-
priate values. For the fourth case, note that we have wtp(λ2) = wtp(λ1λ

∗
1λ2) ≤

wtp(λ
∗
1λ2)+wtp(λ2) which implies wtp(λ∗1λ2) ≥ wtp(λ2)−wtp(λ1). To see that this

bound is achieved, it is sufficient to choose two exponents so that no carry occurs
when they are subtracted. For the final case, note that

wtp(λ
∗
1λ2) ≡ wtp(λ2)− wtp(λ1) (mod p− 1) .

Intuitively, r should be the smallest possible value satisfying this congruence. How-
ever, it is not possible that r = 0 since that would mean λ∗1λ2 = 1. To complete
the proof, one should construct characters so that equality holds but for brevity we
omit this final step. �

Plugging in Lemma 11 into Theorem 26 and Equation (3) provides a description
of the ultrametric integral transition matrix for one round of a Feistel cipher with
an arbitrary round function of p-degree d, in terms of the p-weights of the input and
output characters. The resulting formula contains rather many case distinctions,
so we instead give an example.

Example 17. Let V be a matrix of size (e(p−1)+1)2×(e(p−1)+1)2 containing
lower bounds on the valuations ordpA

F
χ,ψ for different values of (wtp(ψ1),wtp(ψ2))
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(columns) and (wtp(χ1),wtp(χ2)) (rows). For q = 23 and d = 2, we get

V =



( · , 0) ( · , 1) ( · , 2) ( · , 3)

( · , 0)

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞

( · , 1)

0 0 2 3 0 1 2 3 0 1 2 3 1 2 3 4
∞ ∞ ∞ ∞ 0 0 2 3 0 1 2 3 0 1 2 3
∞ ∞ ∞ ∞ 0 1 2 3 0 0 2 3 0 1 2 3
∞ ∞ ∞ ∞ 0 1 2 3 0 1 2 3 0 0 2 3

( · , 2)

0 0 0 3 0 0 1 3 0 0 1 3 0 1 2 3
∞ ∞ ∞ ∞ 0 0 0 3 0 0 1 3 0 0 1 3
∞ ∞ ∞ ∞ 0 0 1 3 0 0 0 3 0 0 1 3
∞ ∞ ∞ ∞ 0 0 1 3 0 0 1 3 0 0 0 3

( · , 3)

0 0 0 0 0 0 0 3 0 0 0 3 0 0 1 3
∞ ∞ ∞ ∞ 0 0 0 0 0 0 0 3 0 0 0 3
∞ ∞ ∞ ∞ 0 0 0 3 0 0 0 0 0 0 0 3
∞ ∞ ∞ ∞ 0 0 0 3 0 0 0 3 0 0 0 0



.

4.3. Multiple rounds. If p is small (such as p = 2), then the dimensions of
the valuation matrix grow only quadratically with e. For many such cases, this
makes it feasible to compute V directly. For two rounds of a Feistel cipher, the
matrix U of valuation lower bounds can be computed as follows3:

Uw2,w1 = min
w

{
Vw2,w + Vw,w1

}
.

This can of course be iterated. Instead of calculating and storing complete matrices,
it is usually easier to store only a sparse vector encoding the current state clipped
at a certain maximum valuation. As a further improvement, this can be combined
with the miss-in-the-middle approach. Note that these vectors are nothing but
compact representations of subspaces of k[F2

q] with increasingly larger dimension.
These subspaces form a trail in the general sense defined in the first lecture.

Before giving an example of a property for multiple rounds, it is worth mention-
ing that the calculation method sketched above is analogous to (but somewhat more
sophisticated than) the ‘matrix method’ to find zero-correlation linear approxima-
tions and impossible differentials, and to the original description of the word-based
division property [5]. In fact, the latter method is essentially the residue-field ver-
sion of the above for Feistel ciphers on F2n

2 . Note that for F2n
2 , one keeps track of

the Hamming weight of both branches rather than the p-weight4.

3The operations are those of the ‘min-plus tropical semiring’.
4The two-weight and the Hamming weight are not quite the same because they are defined

on different monoids, but this does not matter in the generic case if only the 2-degree of G is used.
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Example 18. For the same parameters as in Example 17, the following matrix
of valuation lower bounds is obtained for three Feistel rounds:

V =



( · , 0) ( · , 1) ( · , 2) ( · , 3)

( · , 0)

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 0 0 1 0 0 1 2 0 0 1 3 0 1 2 3
0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3

( · , 1)

0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

( · , 2)

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

( · , 3)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

The last column does not contain any information, given that the Feistel construc-
tion is always a permutation. Not surprisingly, the lowest absolute correlation is
obtained when the left output character has p-weight equal to one and the weights
of the input characters are (e(p−1), e(p−1)−1). As discussed below, this property
can be evaluated using pe−1 = 4 chosen plaintexts.

4.4. Lowest-correlation approximation. As an example, and because it is
the approximation that covers the greatest number of rounds, let us take a closer
look at the approximation with input weights (e(p − 1), e(p − 1) − 1) and output
weights (1, 0) that was identified in Example 18. Without going into details, we
mention that this property can be tested using p2e−1 encryptions, though this as-
sumes one has additional (weaker) divisibility properties for other input characters
with lower p-weights. The corresponding input set is a submonoid of F2e

p but not
of Fp2e .

Figure 4 shows how the valuation decreases with an increasing number of rounds
for q ∈ {232, 320} and d = 2. One result implied by this is that for p = 2 there is a
zero-sum property on eleven rounds with 263 data. This is precisely the property
obtained by using the word-based division property. When using the word-based
division property, one works over the monoid F2n

2 rather than F2
2n but for the generic

case both monoids yield the same result. It must be emphasized that this is only
the case when we allow arbitrary round functions of given p-degree.

If p is large, then directly computing (products with) the entire matrix of
valuation lower bounds is not feasible. One can instead rely on off-the-shelf solvers,
or follow a more analytical approach. For this lecture, we limit ourselves to the
cases analyzed above.

4.5. Concrete cases. In concrete cases, absolute correlations may be much
smaller than the generic upper bound. A dedicated analysis of the trails is then



4. FEISTEL CIPHERS OVER Fq 49

1 2 3 4 5 6 7 8 9 10 11 12
1

10

19

29

39

49

Number of rounds

Lo
w

er
bo

un
d

on
or
d
p
A

F χ
,ψ

F320

F232

Figure 4. Maximum valuation as a function of the number of
rounds for a generic Feistel cipher on F2

q with round function of
2-degree d = 2 and q ≈ 232 (specifically, q ∈ {232, 320}).

necessary. To illustrate this, we take q = 232 as in Figure 4 and assume the round
function G : Fq → Fq is given by

G(x) = (x+ k1)
3 + k2 ,

with k1 and k2 arbitrary nonzero constants. The constants may be different in
different rounds. Note that sp(3) = 2 so the generic analysis from Figure 4 is
applicable. We construct a simplified model for this function (likely not tight),
by keeping track only of p-weights but taking into account the specific properties
of AG. The result (for the same property as before) is shown in Figure 5. The
valuation in round 11 is three (as opposed to one), but the valuation still drops to
zero after 12 rounds.
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Figure 5. Valuation as a function of the number of rounds for a
Feistel cipher on F2

q with round function x 7→ (x + k1)
3 + k2 and

q = 232. The property is the same as in Figure 4.
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